
Galaxy Consensus: A Practical Proof-of-Stake Protocol With

a Robust Delegation Mechanism

Demmon Guo, Chris Shi, Yu Chen

Wanchain Research and Development Team

Introduction

Consensus is the most critical component of any blockchain system. It is the

foundational layer which guarantees the stability and safety of the network. Bitcoin

introduced the first blockchain consensus protocol secured by Proof of Work (PoW)

through which a block producer continuously computes new hashes until it meets the

criteria predefined for a valid block. As PoW consensus is computationally intensive,

the energy consumption inherent in PoW systems has become a major concern. To

address this issue, alternative protocols secured by stake rather than computational

power have been proposed. Proof of Stake has since become the most widely studied

and generally accepted alternative to PoW, and we believe that it is the right direction

for the future of blockchain consensus. We have carried out intensive research into

recently proposed protocols such as Ouroboros[1], Dfinity[2], and others. Based on the

theoretical paradigms of the aforementioned protocols, we have developed Galaxy

consensus through adjusting cryptographic functions, tuning staking parameters, and

optimizing block generation. In Galaxy consensus we also introduce an innovative

delegation mechanism which has been implemented for the Wanchain blockchain as a

Proof of Concept (POC).

Galaxy Consensus Innovation:

First, we have made a rational staking design to simulate coin age in account models

and ensure the stability of consensus participants. Rather than being passively selected,

WAN holders must register to participate in Galaxy consensus. This ensures that a larger

portion of participants are active and not “sleepy”[3], which serves to improve the

stability of the network.

Second, we have designed a novel and secure random number generation algorithm to

support block proposer selection and other random number usage, which will introduce

entropy and ensure the security of the entire protocol.

Third, we have designed a ULS (unique leader selection) algorithm for unique block

proposer selection. In contrast with other selection algorithms, such as VRF, this design

achieves both anonymity of block proposers and low probability of natural forking.

Fourth, we have designed a triple ECDSA proxy signature scheme to implement a

robust delegation mechanism. This makes it easy for users with only a small amount of

WAN to participate in consensus and attracts more stake to the PoS protocol.

Fifth, we have designed a fair and rational incentive mechanism to encourage honest

behavior and punish malicious behavior. The incentive mechanism contributes to a

healthy stake distribution to prevent stake centralization.

Paper Outline:

We present the design of Wanstake in Section 1. Wanstake is a representation of an

account's stake in the PoS system, determined by the amount of WAN held in addition

to the length of time it is held for. In Section 2 we describe the core protocol of Galaxy

consensus, including random number generation and the unique leader selection

algorithm. Our delegation mechanism and incentive mechanism are presented in

Section 3 and Section 4. In Section 5 we discuss the resilience of the protocol under

various attacks. In Section 6, we describe the strengths of Galaxy consensus.

1 Wanstake Design

1.1 Design Overview

All proof of stake (PoS) schemes aim to solve the problem of reaching consensus in a

decentralized way among all participants. However, many existing PoS schemes fail to

address a number of concerns which are of great importance to modern public

blockchains, such as the stability and activeness of consensus participants, distribution

of stake, etc. Our design approach aims to address these concerns by accomplishing the

goals listed below, which are of great practical importance for an effective PoS scheme.

 High stability – Consensus participants should consistently remain online and

participate in the consensus protocol.

 Active participation – Rather than being passively selected by the consensus

algorithm to be a block proposer, consensus participants must register on their own

initiative in order to participate. In this way, the participants are ensured to be

highly active and are unlikely to be offline and thereby violate the PoS algorithm.

 Independence of participants – Participants will not get extra benefit by splitting

tokens in different accounts or cooperating with other participants to pool their

tokens together.

 Healthy stake distribution – A healthy stake distribution is neither too

concentrated nor too dispersed. The protocol should encourage WAN holders to

contribute as many tokens as possible to the PoS scheme, but there also must be a

way to limit the influence of large WAN holders (such as exchanges) in order to

prevent their control of the consensus process.

1.2 Wanstake

Definitions:

WAN – Native token of Wanchain. WAN is converted to Wanstake by being locked in

a special smart contract (consensus smart contract).

Wanstake – Wanstake is generated by staking WAN. The more WAN and the longer

they are locked in the staking contract, the more Wanstake will be generated.

Stake Ratio – An individual’s Wanstake proportion compared to the total Wanstake.

CSC – Short for consensus smart contract. WAN holders lock WAN in the CSC for a

chosen period of time to get Wanstake.

𝑯 function – A function to calculate the amount of Wanstake of consensus participants.

WAN holders participate in the Wanchain PoS scheme by sending a certain amount of

WAN to the consensus smart contract to be locked for a period specified by the WAN

holder. Wanstake will then be calculated at a rate according to both the amount of WAN

staked, and also the length of time WAN is held in the consensus smart contract. The

amount of Wanstake generated is not constant over the staking period, rather, the

amount of remaining time in the locking period influences the amount of Wanstake

generated throughout the staking period. It can be assumed that participants will be

more and more honest and stable closer to the end of the locking period. Accounts with

Wanstake will be selected to participate in the consensus by the protocol with a

probability proportional to their Wanstake ratio. When the locking time finishes, the

stakeholders lose the right to participate in PoS consensus, and their WAN will be

returned to the original account after a set period of time.

Figure1: From WAN to probability to be selected

As shown above, the 𝐻 function is important for calculating the amount of Wanstake

rewarded. In order to achieve the goals listed in the design overview, the 𝐻 function

should satisfy several properties:

𝜔 denotes the amount of WAN to be locked

𝐿 denotes the locking time.

𝑡 denotes the ratio of remaining locking time to total locking time, which starts with 1

and ends with 0.

Property 1. Monotonous increasing for 𝜔 and 𝐿

𝐻(𝜔1, 𝐿, 𝑡) > 𝐻(𝜔2, 𝐿, 𝑡), when 𝜔1 > 𝜔2

𝐻(𝜔, 𝐿1, 𝑡) > 𝐻(𝜔, 𝐿2, 𝑡), when 𝐿1 > 𝐿2

This property implies that WAN holders get more Wanstake by locking more WAN for

a longer time, which contributes to the goal of highly stable participants.

Property 2. Monotonous decreasing for 𝑡

𝐻(𝜔, 𝐿, 𝑡1) < 𝐻(𝜔, 𝐿, 𝑡2), when 𝑡1 > 𝑡2

This property implies that a participant’s reliability increases during participation time,

since their honest behavior is made evident over the period of participation.

Property 3. Linear for 𝜔

𝐻(𝜔1 + 𝜔2, 𝐿, 𝑡) = 𝐻(𝜔1, 𝐿, 𝑡) + 𝐻(𝜔2, 𝐿, 𝑡)

This property implies that WAN holders cannot get extra Wanstake by splitting their

WAN in multiple accounts.

Property 4. Integral concave for 𝐿

∫ 𝐻(𝜔, 𝐿1 + 𝐿2, 𝑡)𝑑𝑡′ > ∫ 𝐻(𝜔, 𝐿1, 𝑡)𝑑𝑡′ + ∫ 𝐻(𝜔, 𝐿2, 𝑡)𝑑𝑡′
𝐿2

 𝑡′=0

𝐿1

 𝑡′=0

𝐿1+𝐿2

𝑡′=0

Notice that 𝑡′ here is the total elapsed time during the locking period and 𝑡 =
𝐿−𝑡′

𝐿
. This

property implies that we encourage one longer participation period rather than two

shorter participation periods.

A candidate function which satisfies the 4 properties above would be

𝐻(𝜔, 𝐿, 𝑡) = 𝜔𝜎𝐿𝑒
−𝑡

Where 𝜎𝐿 is an increasing function of 𝐿. In this case property 4 could be satisfied and

it will be proved in Appendix 1.

2 Core Protocol

2.1 Notions and Assumptions

In order to describe our protocol, we will first introduce some notions and assumptions

below:

Community – The group of PoS protocol participants. The protocol members update

in a constant period.

Slot – A discrete time unit indexed by an integer 𝑖, denoted as 𝑠𝑙𝑜𝑡𝑖. The slots are listed

continuously. In our protocol, there is at most one block proposed in each slot.

Slot Leader – The valid block proposer in a slot. In our protocol, there is only one

protocol participant selected to be the valid proposer.

Epoch – An epoch consists of a set of adjacent slots with constant size. In the start of

each epoch, consensus participants will be randomly selected from the Community to

form a random number proposer group, and the group will work together to generate a

random number. Within each epoch, participants will be randomly chosen from the

Community to form a block proposer group which will propose and generate blocks.

The cycle of epochs continues indefinitely, and the protocol is executed once in each

epoch.

Epoch Leader – There is a group of Epoch Leaders for each epoch. Epoch Leaders are

selected from the Community, and Slot Leaders are selected from Epoch Leaders.

Epoch leaders for 𝑒𝑝𝑜𝑐ℎ𝑛 are selected at the beginning of 𝑒𝑝𝑜𝑐ℎ𝑛−1.

Random Number Proposer – There is a group of Random Number Proposers for each

epoch. Random Number Proposers are selected from the Community and in charge for

generating a random number for each epoch.

Random Beacon – The random generator simulated by the Random Number Proposer

Group. It outputs a random number in each epoch.

Security Parameter – This parameter is denoted as 𝑘. The security parameter affects

the data certainty. The block data will be stable if it is more than 𝑘 blocks deep.

The security of our protocol is guaranteed under the following assumptions:

World Time – Users are equipped with (roughly synchronized) clocks that indicate the

current slot.

Honest Stake Majority – the total stake held by the Community ensures an honest

majority, which means that more than half of the total stake belongs to honest

participants.

Semi-synchronous Network – There is a maximum delay that is applied to message

delivery and it is unknown to the protocol participants.

Community Corruption Delay – There is a minimum delay when a malicious

Community member wants to corrupt an honest one.

2.2 Protocol Overview

As introduced in the above section, we separate the definition of WAN and Wanstake

since a large portion of WAN holders are offline, and can therefore be considered

“sleepy”. We need to know who wants to participate in the protocol to ensure consensus

can be reached, so we require participants to register in the Community by locking a

specified amount of WAN in the consensus smart contract. This contributes to

increasing the stability and activeness of participants.

The generation of random numbers is significant for consensus protocol design,

especially when it comes to random selection. We designed a random generation

algorithm to simulate a random beacon. This algorithm is run once in an epoch by the

Random Number Proposer Group chosen from the Community, and the result will be

used in 3 aspects: (i) as a random seed for the Random Number Proposer Group

selection of the current epoch, (ii) as a random seed for the Epoch Leader selection of

next epoch, (iii) as a random seed used to set the order of the Epoch Leaders of this

epoch.

In contrast to BFT-based protocols, our protocol is chain-based. The main design

challenge is leader selection. Other PoS protocols usually use VRFs to realize the

selection which means there may be several leaders corresponding to one slot or even

none at all. We wanted to design a selection algorithm to guarantee that there is only

one leader corresponding to one slot. In order to prevent the leader being known

publicly in advance, the Epoch Leader Group will generate a secret message to

determine the right to propose a block, which can be verified publicly after block

production, but is unknown to other users. This reduces corruption risk. In order to

prevent grinding attacks, the Slot Leader sequence will be fixed at the beginning of the

next epoch by the random beacon. So, the secret message generation will be done before

random beacon updates.

In general, our protocol sequence is as follows: (i) a Community responsible for

consensus is formed by protocol participants, (ii) at the beginning of each epoch, a

Random Number Proposer Group and an Epoch Leader Group (for the next epoch) are

selected from the Community using a random number from the random beacon, (iii)

the Random Number Proposer Group generates a new random number to update the

random beacon in the current epoch, (iv) the Epoch Leader Group generates a secret

verifiable message unknown to others in this epoch, (v) the Epoch Leader Group

determined at the beginning of the previous epoch runs a selection algorithm to

determine the unique leader of each slot in the current epoch who proposes block.

2.3 Random Beacon

2.3.1 Design Background

The core task of any consensus scheme is to ensure that the whole network agrees on

who will be the next block proposer. This is generally referred to as the leader selection

process. A fair and randomized leader selection process is the basis of the chain’s

liveness. To achieve fairness and randomness, entropy must be introduced into the

system. PoW introduces entropy naturally because the secure hash function (SHA256)

used in mining is one-way direction and collision-free. There is no better solution to

solve the hash puzzle than to try as many different inputs as possible, which is called

method of exhaustion. The first party to solve the hash puzzle has the right to propose

a block. It is clearly fair and randomized. However, for PoS, introducing entropy into

the leader selection process is one of the main design challenges. There is no natural

random source for a decentralized system, so we must create one. That is the random

beacon.

The random beacon is the basis of a secure PoS system. A good random beacon should

satisfy several properties:

 Distributed – There must be no trusted third party involved in the production

process of the random beacon.

 Unpredictable – Given knowledge of all prior output, no one has an advantage in

predicting future output.

 Unbiased – No one can bias the output of the random beacon using computation

resources or advantages of backwardness.

 Uniformity – The output of the random beacon has a uniform distribution in its

domain.

 G.O.D (Guaranteed Output Delivery) - Once the process starts, no one can

prevent the output by aborting the protocol.

 Publicly verifiable – Parties that do not necessarily participate in randomness

generation but wish to audit the protocol execution must be able to attest a

posteriori that the randomness source is reliable and unbiased.

Random Beacon design:

To design a random beacon which fits our PoS scheme in accordance with the properties

outlined above, our efforts are focused on two areas. First, we use the blockchain as a

trusted broadcast channel. All the participants exchange data through the blockchain.

In this way, there is no need to set up a new communication channel among the

participants, and this saves bandwidth. Additionally, posting data on the blockchain

ensure its correctness. Second, we use several cryptographic tools. Verifiable secret

sharing makes it distributed and publicly verifiable. The threshold signature scheme

makes it unpredictable, unbiased and G.O.D. Hash functions make the output uniformly

distributed.

2.3.2 Preliminaries

Elliptic Curve

Let 𝑝 be a prime number, and 𝐹𝑝 the finite field with 𝑝 elements. An elliptic curve

𝐸(𝐹𝑝) is the set of points (𝑥, 𝑦) over 𝐹𝑝 to an equation of form 𝐸: 𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 =

𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥 + 𝑎6 where 𝑎𝑖 ∈ 𝐹𝑝 , together with an additional point at infinity,

denoted 𝑂. There exists an abelian group law of addition on 𝐸. Explicit formulas for

computing the coordinates of a point 𝑃3 = 𝑃1 + 𝑃2 from the coordinates of 𝑃1 and 𝑃2

are given in [4].

The number of points of an elliptic curve 𝐸(𝐹𝑝), denoted #𝐸(𝐹𝑝), is called the order of

the curve over 𝐹𝑝. Let 𝑛 = #𝐸(𝐹𝑝). The order of a point 𝐺 ∈ 𝐸(𝐹𝑝) is the least nonzero

integer 𝑟 such that 𝑟𝐺 = 𝑂. Actually, multiples of 𝐺 construct a cyclic group of order

𝑟, and this is the group generated by 𝐺 we use in our protocol. A user 𝑈𝑖 generates a

key pair (𝑝𝑘𝑖, 𝑠𝑘𝑖), where 𝑝𝑘𝑖 is the public key, 𝑠𝑘𝑖 is the secret key and 𝑝𝑘𝑖 = 𝑠𝑘𝑖 ∙ 𝐺.

Informally 𝑝𝑘𝑖 denotes 𝑈𝑖. More details about elliptic curve cryptography can be found

in [4].

Shamir’s Threshold Secret Sharing

Suppose 𝑃 makes a (𝑡, 𝑛) threshold secret sharing of secret 𝑠 for 𝑃1 ,𝑃2 , ,, 𝑃𝑛 . 𝑃

performs as follows:

 Choose a random polynomial of degree 𝑡 − 1，𝑓(𝑥) = 𝑠 + 𝑎1𝑥 +⋯+ 𝑎𝑡−1𝑥
𝑡−1.

 Randomly select distinct numbers 𝑥1, 𝑥2… , 𝑥𝑛 , and compute 𝑓(𝑥1), 𝑓(𝑥2)… ,

𝑓(𝑥𝑛).

 Send 𝑃𝑖 the secret share 𝑠𝑖 = (𝑥𝑖 , 𝑓(𝑥𝑖)), 𝑖 = 1,2,⋯ , 𝑛.

Any 𝑘 ≥ 𝑡 parties could work together to reconstruct 𝑠:

𝑠 =∑𝑓(𝑥𝑖) ∏
𝑥𝑗

𝑥𝑗 − 𝑥𝑖

𝑘

𝑗=1,𝑗≠𝑖

𝑘

𝑖=1

More details about Shamir’s threshold secret sharing can be found in [5] [6] [7].

Threshold Signatures

In a (𝑡, 𝑛) threshold signature scheme, 𝑛 parties jointly set up a public key (the group

public key) and each party retains an individual secret (the secret key share). After this

setup, 𝑡 out of the 𝑛 parties are required and sufficient for creating a signature (the

group signature) that validates against the group public key.

A Pairing Based Digital Signature Scheme

This signature scheme is a unique, non-interactive, pairing-based scheme. These

properties make it suitable for a random beacon.

𝐺1 , 𝐺2 are two cyclic subgroups of an elliptic curve with the same order 𝑞 , 𝐺𝑇 is a

cyclic subgroup of finite field. 𝑔1 ,𝑔2 ,𝑔𝑇 are generators of 𝐺1 , 𝐺2 , 𝐺𝑇 . 𝐻 is a hash

function: {0,1}∗ → 𝐺1. 𝑒 is a non-degenerate, bilinear pairing: 𝐺1 × 𝐺2 → 𝐺𝑇. Private

key 𝑠𝑘 ∈ (1, 𝑞), public key 𝑝𝑘 = 𝑠𝑘 ∙ 𝑔2. Then the signing and verifying algorithm are

as follows:

𝑃𝐵𝑠𝑖𝑔𝑛(𝑠𝑘,𝑀) = 𝑠𝑘 ∙ 𝐻(𝑀)

𝑃𝐵𝑣𝑒𝑟𝑖𝑓𝑦(𝑝𝑘,𝑀, 𝜎) tests whether 𝑒(𝜎, 𝑔2) = 𝑒(𝐻(𝑀), 𝑝𝑘)

Reed-Solomon Code

We use Reed-Solomon code with the following form:

𝐶 = {(𝑝(1), 𝑝(2),⋯ , 𝑝(𝑛)): 𝑝(𝑥) ∈ 𝑍𝑝[𝑥], 𝑑𝑒𝑔𝑝(𝑥) ≤ 𝑡 − 1}

Where 𝑝(𝑥) ranges over all polynomials in 𝑍𝑝[𝑥] with degree at most 𝑡 − 1.

At the same time, we define its dual code as follows:

𝐶⊥ = {(𝑣1𝑓(1), 𝑣2𝑓(2),⋯ , 𝑣𝑛𝑓(𝑛)): 𝑓(𝑥) ∈ 𝑍𝑝[𝑥], 𝑑𝑒𝑔𝑓(𝑥) ≤ 𝑛 − 𝑡 − 1}

For the coefficients 𝑣𝑖 = ∏
1

𝑖−𝑗

𝑛
𝑗=1,𝑗≠𝑖

Thus, the following lemma exists:

Lemma: If 𝑣 ∈ 𝑍𝑞
𝑛, and 𝑐⊥ is chosen uniformly at random in 𝐶⊥, then the probability

that < 𝑣, 𝑐⊥ > = 0 is exactly
1

𝑝
 .

More details about Reed-Solomon Code can be found in [8]

Zero-Knowledge Proofs of Discrete Logarithm Knowledge

Based on the DDH assumption in the random oracle model, there is a zero-knowledge

proof of knowledge of a value 𝛼 ∈ 𝑍𝑝 such that 𝑥 = 𝑔
𝛼 and 𝑦 = ℎ𝛼 given 𝑔, 𝑥, ℎ, 𝑦.

We denote this proof by 𝐷𝐿𝐸𝑄(𝑔, 𝑥, ℎ, 𝑦). It is constructed by Chaum and Pedersen in

[9] and its detail is in Appendix 2.

2.3.3 Random Beacon

𝐺1, 𝐺2 are two cyclic subgroups of an elliptic curve with generator 𝐺 and 𝐺̅. 𝑒 is a non-

degenerate, bilinear pairing: 𝐺1 × 𝐺2 → 𝐺𝑇. Suppose there is 𝑛 parties participating in

the random beacon process, namely 𝑃𝑖 with key pair (𝑠𝑘𝑖 , 𝑝𝑘𝑖 = 𝑠𝑘𝑖 ∙ 𝐺) . In the

following part, we will describe the detail of Galaxy consensus random beacon.

The random beacon divides an epoch into three stages, DKG1 stage, DKG2 stage and

signing stage. DKG is short for decentralized key generation, and in DKG1 stage all

the participants make commitments for the data submitted in DKG2 stage, where they

work together to generate the group public key and group secret key shares. In signing

stage, every participant computes its group signature share using the group secret key

share. Finally, the group signature derives the random output.

DKG1 Stage

In this stage, every participant performs as follows (take 𝑃𝑖 as an example) :

 Randomly select 𝑠𝑖 ∈ (1, 𝑞).

 Choose a random polynomial of degree 𝑡 − 1，𝑓𝑖(𝑥) = 𝑠𝑖 + 𝑎𝑖,1𝑥 +⋯+

𝑎𝑖,𝑡−1𝑥
𝑡−1.

 Compute 𝑠𝑖,𝑗 = 𝑓𝑖(ℎ𝑗), ℎ𝑗 = 𝐻𝑎𝑠ℎ(𝑝𝑘𝑗), for 𝑗 = 1,2,⋯ , 𝑛.

 Make commitment: 𝑐𝑖,𝑗 = 𝑠𝑖,𝑗 ∙ 𝐺̅, for 𝑗 = 1,2,⋯ , 𝑛.

 𝑃𝑖 send a special transaction 𝐷𝐾𝐺1𝑇𝑥𝑖 with the payload

[(𝑝𝑘1, 𝑝𝑘2, ⋯ , 𝑝𝑘𝑛), (𝑐𝑖,1, 𝑐𝑖,2, ⋯ , 𝑐𝑖,𝑛)]

Verification Logic for 𝐷𝐾𝐺1𝑇𝑥𝑖

When receiving 𝐷𝐾𝐺1𝑇𝑥𝑖, do the following verification:

 Randomly choose 𝑐⊥ = (𝑐1
⊥, 𝑐2

⊥, ⋯ , 𝑐𝑛
⊥) ∈ 𝐶⊥

 Compute ∑ 𝑐𝑗
⊥ ∙𝑛

𝑗=1 𝑐𝑖,𝑗, and check whether it is the point at infinity, if yes, valid.

DKG2 Stage

In this stage, every participant performs as follows (take 𝑃𝑖 as an example, 𝑠𝑖,𝑗 and

𝑐𝑖,𝑗 are generated in DKG1 stage):

 Encrypt: 𝑠𝑖,𝑗̃ = 𝑠𝑖,𝑗 ∙ 𝑝𝑘𝑗, for 𝑗 = 1,2,⋯ , 𝑛.

 Generate proof: 𝑝𝑟𝑜𝑜𝑓𝑖,𝑗 = 𝐷𝐿𝐸𝑄(𝐺̅, 𝑐𝑖,𝑗, 𝑝𝑘𝑗, 𝑠𝑖,𝑗̃), for 𝑗 = 1,2,⋯ , 𝑛.

 𝑃𝑖 send a special transaction 𝐷𝐾𝐺2𝑇𝑥𝑖 with the payload

[(𝑝𝑘1, 𝑝𝑘2, ⋯ , 𝑝𝑘𝑛), (𝑠𝑖,1̃, 𝑠𝑖,2̃, ⋯ , 𝑠𝑖,𝑛̃), (𝑝𝑟𝑜𝑜𝑓𝑖,1, ⋯ , 𝑝𝑟𝑜𝑜𝑓𝑖,𝑛)]

Verification Logic for 𝐷𝐾𝐺2𝑇𝑥𝑖

When receiving 𝐷𝐾𝐺2𝑇𝑥𝑖, do the following verification:

 Verify 𝑝𝑟𝑜𝑜𝑓𝑖,𝑗 is valid, for 𝑗 = 1,2,⋯ , 𝑛.

Get Group Secret Key Share

𝑃𝑖 performs as follows to get its group secret key share:

 Scan all the transactions 𝐷𝐾𝐺2𝑇𝑥𝑗to get 𝑠𝑗,𝑖̃ for 𝑗 = 1,2,⋯ , 𝑛.

 Decrypt: 𝑠𝑗,𝑖̂ = 𝑠𝑘𝑖
−1 ∙ 𝑠𝑗,𝑖̃, for 𝑗 = 1,2,⋯ , 𝑛.

 Compute 𝑔𝑠𝑘𝑠ℎ𝑎𝑟𝑒𝑖 = ∑ 𝑠𝑗,𝑖̂
𝑛
𝑗=1 .

Signing Stage

In this stage, 𝑃𝑖 computes its group signature share as follows:

 Compute 𝑀 = 𝐻𝑎𝑠ℎ(𝑟||𝜍𝑟−1), 𝑟 is the index of current epoch, 𝜍𝑟−1 is the

output of random beacon in epoch 𝑟 − 1, 𝐻𝑎𝑠ℎ() is a common hash function

 Compute 𝑔𝑠𝑖𝑔𝑠ℎ𝑎𝑟𝑒𝑖 = 𝑀 ∙ 𝑔𝑠𝑘𝑠ℎ𝑎𝑟𝑒𝑖

𝑃𝑖 send a special transaction 𝑆𝐼𝐺𝑇𝑥𝑖 with the payload 𝑔𝑠𝑖𝑔𝑠ℎ𝑎𝑟𝑒𝑖

Verification Logic for 𝑆𝐼𝐺𝑇𝑥𝑖

When receiving 𝑆𝐼𝐺𝑇𝑥𝑖, do the following verification:

 Scan all the transactions 𝐷𝐾𝐺1𝑇𝑥𝑗to get 𝑐𝑗,𝑖 for 𝑗 = 1,2,⋯ , 𝑛.

 Compute 𝑔𝑝𝑘𝑠ℎ𝑎𝑟𝑒𝑖 = ∑ 𝑐𝑗,𝑖
𝑛
𝑗=1

 Compute 𝑀 = 𝐻𝑎𝑠ℎ(𝑟||𝜍𝑟−1), 𝑟 is the num of current epoch, 𝜍𝑟−1 is the output

of random beacon in epoch 𝑟 − 1.

 Check whether 𝑒(𝑔𝑠𝑖𝑔𝑠ℎ𝑎𝑟𝑒𝑖, 𝐺̅) = 𝑒(𝑀 ∙ 𝐺, 𝑔𝑝𝑘𝑠ℎ𝑎𝑟𝑒𝑖), if equal, it’s valid.

The Computation of 𝜍𝑟

When epoch 𝑟 gets to the end, the output of the random beacon is 𝜍𝑟 and is

computed as follows:

 Scan all the transactions 𝑆𝐼𝐺𝑇𝑥𝑖 and get 𝑔𝑠𝑖𝑔𝑠ℎ𝑎𝑟𝑒𝑖, for 𝑖 = 1,2,⋯ , 𝑛.

 Compute 𝑔𝑠𝑖𝑔 = ∑ ∏
ℎ𝑗

ℎ𝑗−ℎ𝑖
𝑗≠𝑖

𝑛
𝑖=1 𝑔𝑠𝑖𝑔𝑠ℎ𝑎𝑟𝑒𝑖, where ℎ𝑠 = 𝐻𝑎𝑠ℎ(𝑝𝑘𝑠), for

𝑠 = 1,2,⋯ , 𝑛.

 Scan all the transactions 𝐷𝐾𝐺1𝑇𝑥𝑖to get 𝑐𝑗,𝑖 for 𝑖 = 1,2,⋯ , 𝑛, 𝑗 = 1,2,⋯ , 𝑛.

 Compute 𝑔𝑝𝑘 = ∑ (∏
ℎ𝑗

ℎ𝑗−ℎ𝑖
)𝑗≠𝑖 (∑ 𝑐𝑠,𝑖

𝑛
𝑠=1)𝑛

𝑖=1 , where ℎ𝑠 = 𝐻𝑎𝑠ℎ(𝑝𝑘𝑠), for 𝑠 =

1,2,⋯ , 𝑛.

 Check whether 𝑒(𝑔𝑠𝑖𝑔, 𝐺̅) = 𝑒(𝑀 ∙ 𝐺, 𝑔𝑝𝑘), if not, pause.

 Else compute 𝜍𝑟 = 𝐻𝑎𝑠ℎ(𝑔𝑠𝑖𝑔).

Figure2: Random Beacon working flow

2.5 Epoch Leaders Selection

At the beginning of each epoch, we select the Epoch Leaders of the next epoch

according to the participants’ stake distribution 𝑘 blocks before. Actually, as stated

above we select the group by the probability determined by the participant’s stake. We

implement follow-the-stake-rate to simulate the selection process, which is just like

follow-the-satoshi.

We calculate the stake ratio corresponding to each protocol participant in the

Community, the total stake ratio in sum will be 1. Then we construct a binary search

tree whose leaf nodes are keyed by (a hash of) their public key, and the value of each

tree node is the sum of stake ratio in its subtree. If 𝑟 is the random number output by

the Random Beacon, we calculate 𝑐𝑥𝑖 ≡ ℎ𝑎𝑠ℎ𝑖 where 𝑁 is the number of Epoch

Leader group members and ℎ𝑎𝑠ℎ𝑖() denotes the ith repeated hash execution. We invoke

the ith selection by starting to traverse from the root, branching to the first child if its

value is greater than 𝑐𝑥𝑖, otherwise branching to the second child and update 𝑐𝑥𝑖 by

minus the first child’s value until it reaches the leaf node. After 𝑁 executions, the Epoch

Leader group is selected. We emphasize that the group is a multiset which means that a

protocol participant may be selected more than once. Meanwhile, the Random Number

Proposer Group is selected in this way too, except for 𝑐𝑥𝑖 ≡ ℎ𝑎𝑠ℎ𝑖.

We select the Epoch Leaders according to the participant’s stake ratio, and we will

select the unique Slot Leader by equal probability. It is important to prove that the

probability of a participant to be selected as a Slot Leader is the same in this two-phase

selection as with the direct selection. We give the proof in Appendix 3.

2.6 Unique Slot Leader Selection

After Epoch Leader selection, the selected participants need to generate a secret

message in this epoch to prepare for the unique Slot Leader selection of the next epoch.

Assume 𝑒𝑝𝑜𝑐ℎ𝑙𝑒𝑎𝑑𝑒𝑟𝑠 = {𝑃1, 𝑃2, … , 𝑃𝑁} , and their key pairs are denoted by

{(𝑝𝑘1, 𝑠𝑘1), (𝑝𝑘2, 𝑠𝑘2), … , (𝑝𝑘𝑁 , 𝑠𝑘𝑁)}, The 2 stages in the secret message generation

are as follows:

Stage 1

In this stage, every participant performs as follows (take 𝑃𝑖 as an example):

 Randomly select 𝛼𝑖 ∈ (1, 𝑞).

 Compute 𝑀𝑖 = 𝛼𝑖 ∙ 𝑝𝑘𝑖.

 𝑃𝑖 send a special transaction 𝑆𝑡𝑎𝑔𝑒1𝑇𝑥𝑖 with the payload 𝑀𝑖.

Remarks: This commitment guarantees that the random number generated once could

not be changed again

Stage 2

In this stage, every participant performs as follows (take 𝑃𝑖 as an example):

 Compute 𝛼𝑖 ∙ 𝑝𝑘1, for 𝑖 = 1,2,⋯ , 𝑁.

 Construct 𝐴𝑖 = (𝛼𝑖 ∙ 𝑝𝑘1, 𝛼𝑖 ∙ 𝑝𝑘2, … , 𝛼𝑖 ∙ 𝑝𝑘𝑁).

 Compute 𝜋𝑖 = 𝐷𝐿𝐸𝑄(𝑝𝑘1, 𝛼𝑖 ∙ 𝑝𝑘1, 𝑝𝑘2, 𝛼𝑖 ∙ 𝑝𝑘2, … , 𝑝𝑘𝑁 , 𝛼𝑖 ∙ 𝑝𝑘𝑁).

 𝑃𝑖 send a special transaction 𝑆𝑡𝑎𝑔𝑒2𝑇𝑥𝑖 with the payload 𝐴𝑖 and 𝜋𝑖

Remarks: The proof 𝜋𝑖 here makes sure that 𝛼𝑖 stays the same in the scalar

multiplication of different public keys. Details are in Appendix 2.

Verification Logic for 𝑺𝒕𝒂𝒈𝒆𝟐𝑻𝒙𝒊

 the proof 𝜋 is valid

 the ith data of 𝐴𝑖 is the same as 𝑀𝑖, e.g. 𝐴𝑖[𝑖] = 𝑀𝑖.

Computation of the Common Secret Message

𝑃𝑗 performs as follows to get the common secret message:

 Scan all the 𝑆𝑡𝑎𝑔𝑒2𝑇𝑥𝑖 to get 𝛼𝑖 ∙ 𝑝𝑘𝑗, for 𝑖 = 1,2,⋯ ,𝑁.

 Construct 𝑆𝑗̅ = (𝛼1 ∙ 𝑝𝑘𝑗 , 𝛼2 ∙ 𝑝𝑘𝑗 , … , 𝛼𝑁 ∙ 𝑝𝑘𝑗).

 Compute 𝑆 = 𝑠𝑘𝑗
−1 ∙ 𝑆𝑗̅ = (𝑠𝑘𝑗

−1 ∙ 𝛼1 ∙ 𝑝𝑘𝑗 , 𝑠𝑘𝑗
−1 ∙ 𝛼2 ∙ 𝑝𝑘𝑗 , … , 𝑠𝑘𝑗

−1 ∙ 𝛼𝑁 ∙

𝑝𝑘𝑗) = (𝛼1 ∙ 𝐺, 𝛼2 ∙ 𝐺, … , 𝛼𝑁 ∙ 𝐺)

Unique Leader Selection Algorithm

At the beginning of the next epoch, the Slot Leaders will be selected by 𝑆 and the

random number from the random beacon is generated as follows:

 Sort all Epoch Leaders by ℎ𝑎𝑠ℎ(𝑟||𝑝𝑘𝑖), where 𝑟 is the random output from the

random beacon and 𝑝𝑘𝑖 is the public key of 𝑃𝑖 . We set the Epoch Leader

sequence as 𝑠𝑞 = (𝑃1
′, 𝑃2

′ , … , 𝑃𝑁
′), it is a multisequence.

 Calculate a random number matrix 𝑀 = (𝑠𝑟𝑖𝑗)𝑛×𝑁 where 𝑛 is the length of an

epoch and

𝑠𝑟𝑖𝑗 = ℎ𝑎𝑠ℎ𝑗(𝑅𝐵||𝑒𝑝𝑜𝑐ℎ𝐼𝐷||𝑖)𝑚𝑜𝑑𝑁

𝑐𝑟𝑖 = ℎ𝑎𝑠ℎ (∑𝛼𝑠𝑟𝑖𝑗 ∙ 𝐺

𝑁

𝑗=1

) , 𝑖 = 1,2, … , 𝑛

 Compute 𝑐𝑠𝑖 = 𝑐𝑟𝑖 𝑚𝑜𝑑 𝑁

 Then the Slot Leader of 𝑠𝑙𝑖 is 𝑃𝑐𝑠𝑖+1
′ .

Proposing a Block

When proposing a block, the Slot Leader 𝑃𝑐𝑠𝑡+1
′ need to attach extra data to make the

leader selection process publicly verifiable:

 Compute 𝐺𝑡 = ∑ 𝛼𝑠𝑟𝑡𝑗 ∙ 𝐺
𝑁
𝑗=1

 Compute 𝜋′ = 𝐷𝐿𝐸𝑄 (𝐺, 𝑝𝑘𝑐𝑠𝑡+1, 𝐺𝑡 , ∑ 𝛼𝑠𝑟𝑡𝑗 ∙ 𝑝𝑘𝑐𝑠𝑡+1
𝑁
𝑗=1)

 Attach 𝐺𝑡,𝜋
′ to the proposed block.

Verification Logic for Block Leader

When receiving 𝑏𝑙𝑜𝑐𝑘𝑡, public entities have to be able to verify the correctness of

the Slot Leader:

 Compute 𝑠𝑟𝑡𝑗 = ℎ𝑎𝑠ℎ𝑗(𝑅𝐵||𝑒𝑝𝑜𝑐ℎ𝐼𝐷||𝑖)𝑚𝑜𝑑𝑁, 𝑗 = 1,2, … ,𝑁

 Scan the chain to compute 𝑠𝑘𝐺𝑡 = ∑ 𝛼𝑠𝑟𝑡𝑗 ∙ 𝑝𝑘𝑐𝑠𝑡+1
𝑁
𝑗=1 .

 Verify 𝜋′ is valid with input of (𝐺, 𝑝𝑘𝑐𝑠𝑡+1, 𝐺𝑡, 𝑠𝑘𝐺𝑡).

 Compute 𝑐𝑟𝑡
′ = ℎ𝑎𝑠ℎ(𝐺𝑡).

 Compute 𝑐𝑠𝑡
′ = 𝑐𝑟𝑡

′𝑚𝑜𝑑𝑁

 Check whether 𝑃𝑐𝑠𝑡′+1
′ match the Slot Leader which proposed 𝑏𝑙𝑜𝑐𝑘𝑡.

Thus, the unique Slot Leader is selected from inside the Epoch Leaders and can be

verified publicly.

Figure3: Epoch Leader working flow

Figure4: Stage order in an epoch

3 Delegation Mechanism

3.1 Design Background

This section describes the design of the delegation mechanism in Galaxy consensus.

WAN is distributed widely in different accounts with various amounts. Theoretically

anyone holding WAN has the right to participate in the consensus process (i.e. proof of

stake). Since the rewards of participating in consensus are proportional to the amount

of WAN staked, for those holding a low number of WAN, there is little motivation to

take part in consensus because the cost of being a consensus participant (being online

all the time, listening to the network, saving chain data, etc.) outweighs the rewards.

Thus, it is desirable to have a scheme which ensures that any WAN holder can join in

consensus and benefit from it regardless of how many WAN they hold. Our solution is

a delegation scheme based on proxy signature. Under this scheme, more WAN holders

will join in the consensus and thus the network will be more strong and secure.

Proxy signature is a practical method for delegation scheme design. A proxy signature

protocol allows an entity, called the designator or original signer, to delegate another

entity, called a proxy signer, to sign messages on its behalf, in case of say, temporal

absence, lack of time or computational power, etc. The delegated proxy signer can

compute a proxy signature that can be verified by anyone with access to the original

signer’s certified public key. Strictly, a proxy signature is a tuple 𝑃𝑆 =

(𝐺, 𝐾, 𝑆, 𝑉, (𝐷, 𝑃), 𝑃𝑆, 𝑃𝑉, 𝐼𝐷):

(𝐺, 𝐾, 𝑆, 𝑉) is a digital signature scheme.

 (𝐷, 𝑃) is a pair of randomized algorithms forming the proxy-delegation protocol.

𝐷 takes input the secret key 𝑠𝑘𝑖 of the designator 𝑖 , the identity 𝑗 of the proxy

signer, and a message space descriptor 𝜔 for which user 𝑖 wants to delegate its

signing rights to user 𝑗, and outputs a cert. 𝑃 takes input the cert and secret key 𝑠𝑘𝑗

of the proxy signer and outputs proxy signing key 𝑠𝑘𝑝, which 𝑗 uses to produce

proxy signatures on behalf of user 𝑖.

 𝑃𝑆 is the proxy signing algorithm. It takes as input a proxy signing key 𝑠𝑘𝑝 and a

message 𝑀 and outputs a proxy signature 𝑝𝜎.

 𝑃𝑉 is the proxy verification algorithm. It takes as input a public key 𝑝𝑘, a message

𝑀 and a proxy signature 𝑝𝜎, and outputs 0 or 1. In the latter case, we say that the

proxy signature is valid for 𝑀 relative for 𝑝𝑘.

 𝐼𝐷 is the proxy identification algorithm. It takes a valid proxy signature 𝑝𝜎 and

outputs an identity 𝑖.

Traditional delegation schemes operate like a mining pool, which requires the delegator

to send its tokens to the proxy agent. After collecting all these tokens, the proxy agent

participates in the consensus process and gets a reward which will be spilt among the

delegators according to amounts of their delegated tokens. This scheme is centralized

and insecure, since the proxy agent holds all the tokens and may possibly steal the

tokens Proxy signature is naturally suitable for delegation schemes. Anyone may use

proxy signature to delegate a trusted party to participate in the consensus on their behalf.

The tokens are still in the designator’s pocket, and only the signing right is given out.

This is much more secure.

3.2 Triple ECDSA Proxy Signature Scheme

In this part, we will introduce our proxy signature scheme which is based on ECDSA.

We call it triple ECDSA proxy signature scheme since it uses ECDSA signatures for

standard signing, proxy designation, and proxy signing. Assume the original signer is

Alice with key pair (𝑝𝑘𝑖, 𝑠𝑘𝑖), proxy signer is Bob with key pair (𝑝𝑘𝑗 , 𝑠𝑘𝑗). (𝐺, 𝐾, 𝑆, 𝑉)

is the standard ECDSA digital signature scheme. So, we focus on (𝐷, 𝑃), 𝑃𝑆, 𝑃𝑉.

Algorithm 𝐷

Alice performs the following operations to delegate the signing right to Bob:

 Form a message space 𝜔

 Randomly choose 𝑘 ∈ (1, 𝑞)

 Compute 𝑅 = 𝑘𝐺 = (𝑥𝑟 , 𝑦𝑟)

 Compute ℎ = 𝐻(𝑝𝑘𝑖||𝑝𝑘𝑗||𝜔)

 Set 𝑟 = 𝑥𝑟

 Compute 𝑠 = 𝑘−1(ℎ + 𝑟 × 𝑠𝑘𝑖)

 Output 𝑐𝑒𝑟𝑡 = (𝑝𝑘𝑖, 𝑝𝑘𝑗, 𝜔, (𝑅, 𝑠))

Algorithm 𝑃

Bob performs the following operations to get proxy signing key:

 Parse 𝑐𝑒𝑟𝑡 = (𝑝𝑘𝑖, 𝑝𝑘𝑗 , 𝜔, (𝑅, 𝑠))

 Compute ℎ = 𝐻(𝑝𝑘𝑖||𝑝𝑘𝑗||𝜔)

 Compute 𝑉(𝑝𝑘𝑖 , ℎ, (𝑅, 𝑠)), if outputs 0, 𝑐𝑒𝑟𝑡 is invalid and pause

 Else Compute 𝑠𝑘𝑝 = 𝑠 + 𝑟 × 𝑠𝑘𝑗

Algorithm 𝑃𝑆

Bob performs the following operations to do proxy signing:

 Message 𝑀

 Randomly choose 𝑘𝑝 ∈ (1, 𝑞)

 Compute 𝑅𝑝 = 𝑘𝑝𝐺 = (𝑥𝑝, 𝑦𝑝)

 Compute ℎ𝑝 = 𝐻(𝑀)

 Set 𝑟𝑝 = 𝑥𝑝

 Compute 𝑠𝑝 = 𝑘𝑝
−1(ℎ𝑝 + 𝑟𝑝 × 𝑠𝑘𝑝)

 Output 𝑝𝑟𝑜𝑥𝑦𝑠𝑖𝑔 = (𝑀, (𝑅𝑝, 𝑠𝑝), 𝑐𝑒𝑟𝑡)

Algorithm 𝑃𝑉

The third party performs the following operations to do proxy verification：

 Parse 𝑝𝑟𝑜𝑥𝑦𝑠𝑖𝑔 = (𝑀, (𝑅𝑝, 𝑠𝑝), 𝑐𝑒𝑟𝑡)

 Parse 𝑐𝑒𝑟𝑡 = (𝑝𝑘𝑖, 𝑝𝑘𝑗 , 𝜔, (𝑅, 𝑠))

 Verify 𝑀 ∈ 𝜔, if not, pause

 Compute ℎ = 𝐻(𝑝𝑘𝑖||𝑝𝑘𝑗||𝜔)

 Compute 𝑉(𝑝𝑘𝑖 , ℎ, (𝑅, 𝑠)), if outputs 0, 𝑐𝑒𝑟𝑡 is invalid and pause

 Else Compute 𝑝𝑘𝑝 = 𝑠 ∙ 𝐺 + 𝑟 ∙ 𝑝𝑘𝑗, 𝑅 = (𝑥𝑟 , 𝑦𝑟), 𝑟 = 𝑥𝑟

 Compute 𝑉 (𝑝𝑘𝑝,𝑀, (𝑅𝑝, 𝑠𝑝)), if outputs 1, 𝑝𝑟𝑜𝑥𝑦𝑠𝑖𝑔 is valid

We now prove the correctness of the triple ECDSA proxy signature scheme:

Theorem: For any message space 𝜔, message 𝑀 ∈ 𝜔 and users 𝑖, 𝑗. User 𝑖 delegates

user 𝑗 the signing rights for 𝜔 and user 𝑗 proxy signs 𝑀, then we have

𝑃𝑉(𝑃𝑆(𝑠𝑘𝑝,𝑀)) = 1

Proof: From the definition of (𝐷, 𝑃) , 𝑃𝑆 , 𝑃𝑉 we have the following equivalent

conditions:

𝑃𝑉(𝑃𝑆(𝑠𝑘𝑝,𝑀)) = 1

⇔ 𝑉(𝑝𝑘𝑝,𝑀, (𝑅𝑝, 𝑠𝑝)) = 1

 ⇔ 𝑉(𝑝𝑘𝑝,𝑀, 𝑆(𝑠𝑘𝑝,𝑀)) = 1

⇔ 𝑝𝑘𝑝 = 𝑠𝑘𝑝 ∙ 𝐺

 ⇔ 𝑠 ∙ 𝐺 + 𝑟 ∙ 𝑝𝑘𝑗 = (𝑠 + 𝑟 × 𝑠𝑘𝑗) ∙ 𝐺

⇔ 𝑝𝑘𝑗 = 𝑠𝑘𝑗 ∙ 𝐺

 Observe that 𝑝𝑘𝑗 = 𝑠𝑘𝑗 ∙ 𝐺 □

3.3 Delegation Scheme

Wanchain’s delegation scheme makes use of a trusted ledger based triple ECDSA proxy

signature scheme which writes and reads data and also makes use of smart contract

functionality. This delegation scheme is more efficient than the original triple ECDSA

proxy signature scheme which requires an additional trusted communication channel.

Assume Alice with key pair (𝑝𝑘𝑖, 𝑠𝑘𝑖), Bob with key pair (𝑝𝑘𝑗, 𝑠𝑘𝑗). Alice wants to

devote 𝑎 WAN to the consensus process for a locking time of 𝑡. She wants to delegate

her signing rights to Bob to participate in the consensus process on her behalf. We

design a smart contract, which is named Proxy_SC, to help complete this process.

Proxy_SC makes some calculations and stores some critical data. The whole procedure

is as follows:

Delegation scheme

Alice performs the following operations:

 Set message space 𝜔 =⊥

 Randomly choose 𝑘 ∈ (1, 𝑞)

 Compute 𝑅 = 𝑘𝐺 = (𝑥𝑟 , 𝑦𝑟)

 Compute ℎ = 𝐻(𝑝𝑘𝑖||𝑝𝑘𝑗||𝜔)

 Set 𝑟 = 𝑥𝑟

 Compute 𝑠 = 𝑘−1(ℎ + 𝑟 × 𝑠𝑘𝑖)

 𝑐𝑒𝑟𝑡 = (𝑝𝑘𝑖 , 𝑝𝑘𝑗 , 𝜔, (𝑅, 𝑠))

 Send a transaction 𝑡𝑥 to Proxy_SC with payload (𝑎, 𝑡, 𝑐𝑒𝑟𝑡)

After receiving 𝑡𝑥, Proxy_SC will do the following verifications and computations:

 Parse the payload (𝑎, 𝑡, 𝑐𝑒𝑟𝑡)

 Parse the 𝑐𝑒𝑟𝑡 = (𝑝𝑘𝑖, 𝑝𝑘𝑗, 𝜔, (𝑅, 𝑠))

 Verify whether 𝑝𝑘𝑖 matches the address sending 𝑡𝑥

 Compute ℎ = 𝐻(𝑝𝑘𝑖||𝑝𝑘𝑗||𝜔)

 Compute 𝑉(𝑝𝑘𝑖 , ℎ, (𝑅, 𝑠)), if outputs 0, 𝑐𝑒𝑟𝑡 is invalid and break

 Else Compute 𝑝𝑘𝑝 = 𝑠 ∙ 𝐺 + 𝑟 ∙ 𝑝𝑘𝑗, 𝑅 = (𝑥𝑟 , 𝑦𝑟), 𝑟 = 𝑥𝑟

 Compute the deadline time 𝑡𝑑 = 𝑡𝑛𝑜𝑤 + 𝑡

 Save the tuple (𝑝𝑘𝑖, 𝑝𝑘𝑗 , 𝜔, (𝑅, 𝑠), 𝑝𝑘𝑝, 𝑎, 𝑡, 𝑡𝑑) in the storage of Proxy_SC

 Take 𝑎 WAN out of Alice’s account (i.e. account 𝑝𝑘𝑖) and lock it for time 𝑡

Bob performs the following check and computation to get the proxy secret key:

 Scan the storage of Proxy_SC to find the tuple that involves 𝑝𝑘𝑗

 Parse the tuple (𝑝𝑘𝑖, 𝑝𝑘𝑗 , 𝜔, (𝑅, 𝑠), 𝑝𝑘𝑝, 𝑎, 𝑡, 𝑡𝑑)

 If 𝑡𝑛𝑜𝑤 > 𝑡𝑑, the deadline time has passed, break.

 Else compute 𝑠𝑘𝑝 = 𝑠 + 𝑟 × 𝑠𝑘𝑗

After this time, a new member of our PoS community (𝑝𝑘𝑝, 𝑎, 𝑡) is born and it will

participate in the consensus process. When 𝑝𝑘𝑝 is selected as a random number

proposer or Epoch Leader, then Bob just behaves normally according to the

consensus protocol using 𝑠𝑘𝑝 for signing.

After the deadline time 𝑡𝑑 has passed, (𝑝𝑘𝑝, 𝑎, 𝑡) is moved out of the PoS

Community. The locked 𝑎 WAN will be returned to Alice’s account together with the

reward which will be split between Alice and Bob proportionally.

3.4 Advantages

 Compatibility

Our delegation scheme uses ECDSA, which is the standard digital signature scheme

used in blockchain protocols for standard signing, proxy designation, and proxy signing.

So, no extra digital signature schemes need to be introduced. This design has no conflict

with the existing technical structure. Whether a member directly joins the PoS

Community or joins through the delegation scheme, the verification logic for the

member’s proposed block and data remains the same.

 Non-interactive

The delegation process is non-interactive, so the original signer and proxy signer don’t

have to establish a channel to communicate with each other. This saves bandwidth and

is more practical in the context of blockchain consensus.

 More efficient

There are existing ECDSA proxy signature schemes, the most famous of which is

introduced in the paper “Design of Proxy signature in ECDSA” by Ming-Hsin Chang,

I-Te Chen, and Ming-Te Chen [10]. We refer to this scheme using the author’s initials,

MIM. Our scheme’s delegation process is similar to MIM’s; however, our proxy

verification process is the same as standard ECDSA, which is more efficient than

MIM’s. The proxy verification processes comparison is listed below.

Calculation Type MIM’s scheme Our scheme

Finite Field Calculations 4 3

Scalar Multiplications on ECC 3 2

Point Addition on ECC 1 1

Point Comparison on ECC 1 1

 Clear division of rewards

When the original signer delegates its signing rights to the proxy signer, a new proxy

public key 𝑝𝑘𝑝 is generated, which is controlled by the proxy signer and the

relationship with the original signer is saved in Proxy_SC. When 𝑝𝑘𝑝 is selected as the

random number proposer or block proposed by the PoS algorithm, the proxy will

perform on the behalf of original signer. The benefits made during the consensus

process will be split between the original signer and proxy signer. Even if an entity is

delegated by several other entities, the division of rewards is still clear and spilt between

the corresponding original signer and proxy signer.

 Message space limited

Our triple ECDSA proxy signature scheme uses message space to limit the signing

space of the proxy signer. Even though we haven’t used it (set it as empty) in our

delegation scheme, it still provides the potential for additional application. For example,

we could delegate the signing right to different entities under different conditions and

so on.

4 Incentive Mechanism

For the purpose of incentivizing the active participation in Galaxy consensus protocol

for Wanchain, 10% (21 million) of the total supply of WAN (210 million) has been

reserved as reward. Initially this supply will serve as the main incentive for consensus

participation, but as Wanchain grows and there are more transactions on chain, this

supplemental reward will become a smaller portion of the total reward, and transaction

fees will come to serve as the main incentive.

4.1 Basic Principles

The incentive mechanism is created according to the following principles:

(1) The greater the work, the greater the reward.

(2) Passive and malicious participants are discouraged by penalties.

(3) Receipt of reward and withdrawal of locked stake is delayed to improve security.

(4) A fair and benign competitive environment is desired.

(5) Should ensure reasonable and relatively stable revenue.

4.2 Incentive Model for Consensus

50% of the supplemental reward will be issued in the first five years, and the issuance

of the reward will be cut in half every five years thereafter. Five years is a reasonable

period after taking into consideration both Wanchain’s growth and also long-term

returns for consensus participants. The relation between the total supplemental reward

and the year is:

𝑅𝑡 = 𝑎 + 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑏
2 +⋯ =

𝑎

1 − 𝑏

Where 𝑅𝑡 denotes the supplemental reward, 𝑎 denotes the reward in the first interval,

and 𝑏 denotes the reduction ratio. In our design, 𝑅𝑡 is 21 million, 𝑏 is 50%, and 𝑎 is

10.5 million, this should serve as an attractive incentive for consensus participants. The

following figure shows the supplemental reward allocation where the vertical axis

denotes the total reward and the horizontal axis denotes the years.

Within each five year period, the supplemental reward will be allocated equally within

each epoch. Taking the first five years as an example, if the total supplemental reward

in this period is 𝑎 and there are 𝐾 epochs, the reward for each epoch 𝑅𝑒 would be:

𝑅𝑒 =
𝑎

𝐾

𝑅𝑒 will be given to the Random Number Proposers (RNPs) and Epoch Leaders who

behave honestly. In contrast to POW, not all of the transaction fees for a block will be

given to the block proposer. The transaction fee must also be distributed amongst all

the RNPs because random number generation is a very important parameter for

ensuring security. If only the supplemental reward is supplied, the RNPs will not be

incentivized to participate. Since the supplemental reward is cut in half every 5 years,

RNPs will have less and less motivation to participate. In this way, the reward for each

epoch will be settled in the first block of the next epoch. This ensures consistency in

the behavior of the participants.

Activeness Index

In Galaxy consensus, two types of participants make contributions in maintaining

consensus. RNPs are in charge of generating random numbers to update the Random

Beacon. Epoch Leaders are in charge of generating the secret message array and

proposing blocks. Both of them need to be rewarded in order to incentivize honest

behavior. Therefore, participants are encouraged to consistently participate in random

number generation, secret message generation, and block proposal in the slot owned by

0.00000000

3000000.00000000

6000000.00000000

9000000.00000000

12000000.00000000

15000000.00000000

18000000.00000000

21000000.00000000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

the Epoch Leader. An activeness index is thus defined so that participants will be

rewarded in accordance with their activeness.

The RNP activeness index is defined as 𝛼𝑅𝑁𝑃. If an RNP participates in both of the two

stages for random number generation, his 𝛼𝑅𝑁𝑃 would be 1, and 0 otherwise. Similarly,

the activeness index is denoted as 𝛼𝐸𝐿 for Epoch Leaders. If an Epoch Leader

participates in both of the two stages for secret message array generation, his 𝛼𝐸𝐿 would

be 1, and 0 otherwise. These two indexes will influence their reward from random

number generation and secret message array generation.

Finally, the activeness index 𝛼𝐸𝐿𝐺 is defined for the Epoch Leader Group. In our

protocol, at the start of an epoch, the Slot Leader can only be known by the Epoch

Leaders. After the block is proposed, the Slot Leader can be verified publicly. If some

block is not proposed, only the Epoch Leaders know who is responsible for its proposal.

This information is not publicly available since lot of work must be done to make it

publicly verifiable, and the benefits of doing so are not worth the work necessary. So,

the Epoch Leader Group activeness index is defined to solve the problem in a rational

way. If an epoch includes 𝐾𝑒 slots and only 𝐾𝑣 blocks are proposed validly in this epoch,

the 𝛼𝐸𝐿𝐺 of the Epoch Leaders in charge of this epoch would be

𝛼𝐸𝐿𝐺 =
𝐾𝑣
𝐾𝑒

This index will influence their reward from proposing blocks.

Reward Division

As for the specific allocation in each epoch, the total reward must be divided amongst

the RNPs and Epoch Leaders. An Epoch Leader is required to participate in the unique

Slot Leader selection stages and propose a block if selected. An RNP is required to

participate in the DKG stage and Signing stage. So 𝜆 of the total reward for an epoch is

given to Epoch Leaders and (1 − 𝜆) for RNPs. (1 − 𝜇) of the Epoch Leaders’ reward

will be allocated to incentivize their contributions for generating the secret message

array.

Thus, if there are 𝑁 Epoch Leaders and 𝐾𝑒 slots in each epoch, the reward for a block

will be:

𝑅𝑠 = 𝜇 ∙ (𝜆 ⋅
𝑅𝑒
𝐾𝑒
+ 𝜆 ⋅ 𝑇𝑠)

Where 𝑅𝑒 denotes the reward for the epoch and 𝑇𝑠 denotes the transaction fee of the

block.

An Epoch Leader in charge of proposing blocks in this epoch will get reward 𝑅𝑝

𝑅𝑝 = 𝛼𝐸𝐿𝐺 ∙∑𝑅𝑠

Where 𝛼𝐸𝐿𝐺 denotes the Epoch Leader Group activeness index and ∑𝑅𝑠 denotes the

reward corresponding to the blocks proposed by the Epoch Leader.

The reward for the Epoch Leader who participates in secret message array generation

in the previous epoch will be

𝑅𝑐 = 𝛼𝐸𝐿𝐺 ∙ (1 − 𝜇) ∙ (𝜆 ⋅
𝑅𝑒
𝐾𝑒
+ 𝜆 ⋅ 𝑇𝑠)

Although (1 − 𝜇) may be as low as 10%, it is necessary to set it to encourage the Epoch

Leader to be active in secret message array generation, and security is improved as more

Epoch Leaders participate in secret message array generation.

The reward for the RNP who participants in random number generation will be

𝑅𝑟 = 𝛼𝑅𝑁𝑃 ∙
((1 − 𝜆) ∙ 𝑅𝑒 + (1 − 𝜆) ∙ ∑ 𝑇𝑠)

𝑁𝑟

Where 𝛼𝑅𝑁𝑃 denotes the RNP activeness index, 𝑁𝑟 is the number of RNPs and ∑ 𝑇𝑠

denotes the total transaction fees of the epoch.

The total reward in ideal conditions (one slot for each block, total participation for

random number and secret message array generation) would be (𝑅𝑒 + ∑𝑇𝑠). If any lazy

behavior occurs, the reward would be less. The remaining reward will be put back to

the pool to be used as reward for PoS.

4.3 Incentive Model for Delegation Mechanism

Since the delegation mechanism is necessary for the stakeholders holding small

amounts of WAN, it is necessary to design a reasonable incentive model for it. If

someone wants to be a delegate, they need to publish a profit margin 𝑚. That means if

the delegator is selected to be an RNP or Epoch Leader with reward 𝑅 after work, the

delegate will get 𝑅 ⋅ 𝑚, and the delegator will get 𝑅 ⋅ (1 − 𝑚). This simple scheme will

lead delegates to all provide a similar profit margin through natural competition.

Besides the max amount of stake a delegate could be delegated is proportional to its

principal.

Another goal is the prevention of large staking pools similar to the large mining pools

which have arisen in PoW systems such as Bitcoin, as this tends to give rise to

centralization. The model should promote the formation of fair staking pools. For this

purpose, a ceiling number 𝑠0 is set for the total stake of a single delegate (for example

10% of all currency in circulation). If a delegate’s stake exceeds 𝑠0, the reward will be

reduced.

If the delegate has total stake 𝑠, the reward for the delegator is:

𝑅𝑜 =

{

 𝑅 ⋅ (1 − 𝑚), 𝑠 ≤ 𝑠0

𝑅 ⋅ (1 − 𝑚) ⋅ (1 −
(𝑠 − 𝑠0)

2

𝑠0
2) , 𝑠0 < 𝑠 ≤ 2𝑠0

0, 𝑠 > 2𝑠0

 And the reward for the delegate is:

𝑅𝑑 =

{

𝑅 ⋅ 𝑚, 𝑠 ≤ 𝑠0

𝑅 ⋅ 𝑚 ⋅ (1 −
(𝑠 − 𝑠0)

2

𝑠0
2) , 𝑠0 < 𝑠 ≤ 2𝑠0

0, 𝑠 > 2𝑠0

A ranked list of all potential delegates will be provided which includes their profit

margin and current stake, and all users can make the optimal choice. Since any

delegation which goes beyond the ceiling 𝑠0 for a certain delegate will lead to a

decrease in reward for the both the delegate and delegator, the system naturally

incentivizes stake to be distributed in a more decentralized manner. This reduces the

risk of conspiracy and incentivizes more active users in the Galaxy consensus

ecosystem.

5 Mitigation of Potential Attacks

Double spending attacks – In a double spending attack, the adversary wishes to make

two conflicting transactions both appear valid. There are two conditions which must

occur for this attack: (i) a block with two conflicting transactions or a transaction in

conflict with a previous valid transaction, (ii) two valid chain forks including

conflicting transactions. Regarding (i), the protocol requires that any block received

must be checked for whether it contains any conflicting transactions. Our chain-based

protocol indicates that only the longest chain is valid. So, no two forks can be accepted

as both valid, thus preventing double spending.

Grinding attacks – In grinding attacks, the adversary wishes to influence the leader

selection process to improve their chances of being Slot Leader. In our protocol, leader

selection is based on random beacon and two-phase unique Slot Leader selection. In

the random beacon process, we use a threshold signature scheme that means any

participant can only determine their own signature share. It is impossible for the attacks

to determine the final result as long as more than one participant is honest in the random

number generation, and a number of participants less than the threshold number cannot

predict the final result either. So, the Epoch Leader selection cannot be influenced by

the random number generation. In the secret message array generation in the two-phase

unique Slot Leader selection, the selected participants can only choose to broadcast

their information or not. If they don’t, they will lose some reward. Additionally, the

secret message generation is in front of SIGN stage and the Epoch Leaders are sorted

after SIGN, the adversary has no message advantage to influence the unique Slot Leader

selection.

Transaction denial attacks – In transaction denial attacks, the adversary wishes to

prevent a certain transaction from being confirmed. We emphasize that honest

participants would not deny any specific transactions. So, if transaction denial attacks

happen it means the Slot Leaders are all malicious. Because of the honest majority

assumption and follow-the-stake-rate selection, the probability of these attacks reduces

exponentially with a base of less than 1 2⁄ . The possibility for an adversary to perform

this type of attack comes close to zero.

Bribery attacks – In bribery attacks, the adversary wishes to corrupt the honest

participant to work for them in some bad purpose, such as double spending attacks. In

our protocol, a rational participant will reject a bribe for two reasons. First, if an honest

participant accepts the bribe and turns malicious, he will be punished. Second this

malicious behavior will hurt the Wanchain ecosystem and reduces the value of WAN,

making the participant’s tokens lose value. Thus, no rational actor will commit a bribery

attack. As long as the honest majority holds, bribery attacks cannot violate the security

of our protocol.

Long-range attacks – In long-range attacks[12], the adversary wishes to reconstruct a

chain from a position long before. Then he can make the chain data different from its

true state, for example, to double spend. In our protocol, we design a mechanism to set

some check points on the valid chain, which means as the chain grows, the past data

before the last check point cannot be changed and new blocks before the last check

point will not be accepted. So, it is impossible for an adversary to succeed in long-range

attacks.

Nothing at stake attacks – In nothing at stake attacks, the participant will generate

new blocks in multiple forks from which he could definitely benefit no matter which

fork becomes valid. This tends to happen in PoS protocols, because it costs almost

nothing to generate an additional block, while in PoW consensus, the miners will not

sacrifice computation resources to follow different forks which may get no reward at

all. Meanwhile this usually happens when there are more than one valid proposer of a

slot or position, just like leader selection by VRFs. In our protocol, there is only one

unique Slot Leader of a slot and there are almost no forks. That means there is no

motivation to perform nothing at stake attacks.

Past majority attacks – In past majority attacks, the adversary wishes to corrupt some

previous participants to take an advantage of stake in some past time. It is reasonable

in our assumptions that presently the honest stake majority holds. In order to benefit

from past majority attacks, the adversary needs to cooperate with previous majority

stake holders to rework new blocks to replace blocks in the past majority epoch. This,

similar to long-range attacks described above, will conflict with the last checkpoint.

These kinds of newly generated blocks will not be accepted due to the checkpoint, so

our protocol is not susceptible to past majority attacks.

Selfish-mining – In selfish-mining, a participant would keep a new valid block in

private while constructing the next block in advance. This usually happens in PoW,

because of the advantage of computation time. However, in PoS, there is no need to do

so, especially in our protocol. Since the Slot Leaders are determined at the beginning

of an epoch by the random beacon and the secret message is generated by Epoch

Leaders, no matter whether the participant broadcasts the new block or not, it cannot

influence the selection of the next slot. So, he cannot benefit from keeping the new

block in private. In fact, he may lose rewards by broadcasting the new valid block out

of the slot window. It is not rational to perform selfish-mining, and in the case it does

occur, cannot influence the security of our protocol.

6 Advantages of Galaxy

Provable security

Galaxy consensus is based on the Ouroboros consensus model which is provably secure.

It retains Ouroboros’s original consensus backbone while making improvements to the

core cryptographic components.

Low probability of natural forking

Galaxy consensus uses a ULS (unique leader selection) algorithm to determine the

block proposer. In contrast with VRF, ULS ensures there is a unique proposer for each

block. So, it achieves both anonymity of block proposers and low probability of natural

forking.

Secure introduction of randomness

Introduction of randomness has a significant impact on the security of consensus.

Galaxy consensus introduces randomness using a random beacon, which is based on a

threshold signature scheme. Our random beacon is secure in two ways. First, it remains

secure as long as no less than one of the random beacon participants is honest. Thus, it

reduces the reliance on the honest majority assumption. Second, it ensures G.O.D

(Guaranteed Output Delivery). This ensures that even if several participants are offline,

the random beacon will not halt. It functions normally as long as the number of online

participants exceeds the predefined threshold.

Rational stake design

A rational stake design is a significant consideration in a PoS protocol. In order to keep

the participants live and active, we allow WAN holders to lock their WAN in a special

smart contract to join in Galaxy consensus. The amount of WAN, locking time, and

remaining time of the locking period are used as parameters to calculate participants’

stake score. This design simulates coin age in account model and ensures the stability

of the consensus participants.

Robust delegation mechanism

Galaxy consensus is a PoS protocol with robust delegation mechanism. The key

technology behind the delegation mechanism is our newly proposed ECDSA proxy

signature algorithm, which is compatible, non-interactive, more efficient and message

limited. This full delegation mechanism ensures that any WAN holder can participate

in the consensus and improves the activeness of Wanstake.

Clear and convincing incentive model

Galaxy consensus has a robust incentive model for consensus participants. Since

participants use the blockchain as a broadcast channel to exchange information, all their

behavior is reflected on the chain. We introduce the concept of an activeness index to

evaluate participants’ performance. The more active, the more reward received. This

incentive mechanism is clear and convincing.

Reference

1. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In Jonathan Katz

and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages

357–388. Springer, Heidelberg, August 2017.

2. Ittai Abraham, Dahlia Malkhi, Kartik Nayak, and Ling Ren. Dfinity Consensus,

Explored. Cryptology ePrint Archive, Report 2018/1153, 2018.

https://eprint.iacr.org/2018/1153.pdf.

3. Iddo Bentov, Rafael Pass, and Elaine Shi. The sleepy model of consensus. IACR

Cryptology ePrint Archive, 2016:918, 2016.

4. J.H. Silverman, “The Arithmetic of Elliptic Curves,” Graduate Texts in

Mathematics, vol. 106, Springer-Verlag, 1986.

5. Shamir A. How to share a secret. Communications of the ACM, 1979, 24(11):

612~613

6. B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable Secret Sharing and

Achieving Simultaneity in the Presence of Faults. In Proceeding 26th Annual

Symposium on the Foundations of Computer Science, IEEE, 1985:383~395.

7. Ronald L. Rivest, Adi Shamir, and Yael Tauman, How to Leak a Secret: Theory and

Applications of Ring Signatures, Springer Berlin Heidelberg , 2006, 22(11):164-

186.

8. Robert J. McEliece and Dilip V. Sarwate. On sharing secrets and reed-solomon

codes. Commun. ACM, 24(9):583–584, 1981.

9. David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F.

Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer,

Heidelberg, August 1993.

10. Chang, Ming Hsin , I. T. Chen , and M. T. Chen . " [IEEE 2008 Eighth International

Conference on Intelligent Systems Design and Applications (ISDA) - Kaohsuing,

Taiwan (2008.11.26-2008.11.28)] 2008 Eighth International Conference on

Intelligent Systems Design and Applications - Design of Proxy Signature in

ECDSA." (2008):17-22.

11. R. Gennaro, S.Jarecki, H. Krawczyk, and T. Rabin. Advances in Cryptology —

EUROCRYPT ’99: International Conference on the Theory and Application of

Cryptographic Techniques Prague, Czech Republic, May 2–6, 1999 Proceedings,

https://eprint.iacr.org/2018/1153.pdf

chapter Secure Distributed Key Generation for Discrete-Log Based Crypto systems,

pages 295–310. SpringerBerlinHeidelberg,Berlin,Heidelberg,1999.

12. Vitalik Buterin. Long-range attacks: The serious problem with adaptive proof of

work. https://blog.ethereum.org/2014/05/15/long-range-attacks-the-serious-

problem-withadaptive-proof-of-work/, 2014.

13. M. Mambo, K. Usuda, and E. Okamoto, “Proxy signatures: Delegation of the power

to sign messages”, IEICE Trans. Fundamentals, vol. E79-A, no.9,

pp.13381354,1996

14. Kim S, Park S, Won D. Proxy signatures, Revisited[C], International Conference

on Information & Communication Security. 1997.

Appendix 1

In Section 1, we list 4 properties which should be satisfied in the function to calculate

the amount of Wanstake of consensus participants. A candidate function would be

𝐻(𝜔, 𝐿, 𝑡) = 𝜔𝜎𝐿𝑒
−𝑡

Where 𝜎𝐿 is an increasing function of 𝐿. It satisfies the first 3 properties obviously. We

need to prove that it also satisfy the property 4.

∫ 𝐻(𝜔, 𝐿1 + 𝐿2, 𝑡)𝑑𝑡′ > ∫ 𝐻(𝜔, 𝐿1, 𝑡)𝑑𝑡′ + ∫ 𝐻(𝜔, 𝐿2, 𝑡)𝑑𝑡′
𝐿2

t′=0

𝐿1

𝑡′=0

𝐿1+𝐿2

𝑡′=0

In property 4, 𝑡′ here is the total elapsed time during the locking period and 𝑡 =
𝐿−𝑡′

𝐿
.

We calculate the integral ∫ 𝐻(𝜔, 𝐿2, 𝑡)𝑑𝑡′
𝐿2

𝑡′=0
 as an example, and transfer the ratio of

remaining locking time to elapsed time below.

∫ 𝐻(𝜔, 𝐿2, 𝑡)𝑑𝑡′
𝐿2

𝑡′=0

= ∫ 𝜔𝜎𝐿2𝑒
−(
𝐿2−𝑡′
𝐿2

)
𝑑𝑡′

𝐿2

𝑡′=0

= 𝜔𝜎𝐿2∫ 𝑒
𝑡′−𝐿2
𝐿2 𝑑𝑡′

𝐿2

𝑡′=0

= 𝜔𝜎𝐿2𝐿2 (𝑒
𝐿2−𝐿2
𝐿2 − 𝑒

0−𝐿2
𝐿2) = 𝜔𝜎𝐿2𝐿2(1 − 𝑒

−1)

Then the integral concave should be

𝜔𝜎𝐿1+𝐿2(𝐿1 + 𝐿2)(1 − 𝑒
−1) > 𝜔𝜎𝐿1𝐿1(1 − 𝑒

−1) + 𝜔𝜎𝐿2𝐿2(1 − 𝑒
−1)

𝜎𝐿1+𝐿2(𝐿1 + 𝐿2) > 𝜎𝐿1𝐿1 + 𝜎𝐿2𝐿2

(𝜎𝐿1+𝐿2 − 𝜎𝐿1)𝐿1 + (𝜎𝐿1+𝐿2 − 𝜎𝐿2)𝐿2 > 0

Here 𝜎𝐿 is an increasing function of 𝐿. So the property 4 is satisfied.

Actually we want a participant to choose one longer participation period rather than

two shorter participation periods. The integral of 𝐻 function is the accumulative effect

of stake which represents the reward of a participant in a sense. Thus the property 4

implies that a participant who chooses one longer participation period rather than two

shorter participation periods will get more reward.

Appendix 2

In cryptography, the proof is an important primary to ensure coherence which means

that a prover cannot convince a verifier of a fake statement. Our proof scheme is zero-

knowledge, similar to that in [9], while we make it in elliptic curve. Its correctness and

security is based on the DDH assumption on elliptic curve.

First we consider an array of points with length of 2𝑁 where 𝑁 ≥ 2, and the array is

denoted by 𝑝𝑎 = (𝑃1, 𝑄1, … , 𝑃𝑁 , 𝑄𝑁) where 𝑃𝑖, 𝑄𝑖 ∈ 𝐸(𝐹𝑝) , 𝐸(𝐹𝑝) = 𝑛 . The proof

guarantees that there is a value 𝛼 such that 𝑄𝑖 = 𝛼 ∙ 𝑃𝑖 , 𝑖 = 1,2, … ,𝑁 . The proof is

constructed as follows:

 Generate random number 𝜔 ∈ [1, 𝑛] and calculate

𝑃𝑖̅ = 𝜔 ∙ 𝑃𝑖 , 𝑖 = 1,2, … , 𝑁

𝑒 = ℎ𝑎𝑠ℎ(𝑃1, 𝑄1, … , 𝑃𝑁 , 𝑄𝑁 , 𝑃1̅, … , 𝑃𝑁̅̅̅̅)

 Then calculate

𝑧 = 𝜔 − 𝛼 ∙ 𝑒 𝑚𝑜𝑑 𝑛

The proof is 𝜋 = 𝐷𝐿𝐸𝑄(𝑃1, 𝑄1, … , 𝑃𝑁 , 𝑄𝑁) = (𝑒, 𝑧).

The verification of the proof is as follows:

 With (𝑃1, 𝑄1, … , 𝑃𝑁 , 𝑄𝑁) and (𝑒, 𝑧), we calculate

𝑃′𝑖 = 𝑧 ∙ 𝑃𝑖 + 𝑒 ∙ 𝑄𝑖, 𝑖 = 1,2, … ,𝑁

 Then calculate

𝑒′ = ℎ𝑎𝑠ℎ(𝑃1, 𝑄1, … , 𝑃𝑁 , 𝑄𝑁 , 𝑃
′
1, … , 𝑃

′
𝑁)

If 𝑒 = 𝑒′, the proof is valid. Easy to prove

𝑃′𝑖 = 𝑧 ∙ 𝑃𝑖 + 𝑒 ∙ 𝑄𝑖 = 𝑃′𝑖 = (𝜔 − 𝛼 ∙ 𝑒) ∙ 𝑃𝑖 + 𝑒 ∙ 𝑄𝑖 = 𝜔 ∙ 𝑃𝑖 = 𝑃𝑖̅

The generation and verification of the proof is simple, so we denote it as Gen_proof

and Ver_proof in the algorithm and protocol description in the paper above.

Appendix 3

We describe the Epoch Leaders selection in Section 3.5. It is necessary to illustrate that

the probability of a protocol participant to be a Slot Leader is the same in this two-phase

selection and selection directly.

We define the scenario first. There are 𝑛 protocol participants in the Community and

the probability for the participant 𝑈𝑖 to be selected as a Slot Leader is 𝑝𝑖. The number

of the Epoch Leaders is 𝑁 , 𝑁 < 𝑛 . It follows that 𝑝𝑖 is the probability for 𝑈𝑖 to be

selected directly. Then we compute the probability in the protocol two-phase selection

and prove the equivalency. As emphasized in Section 3.5, the Epoch Leaders is a

multiset and the second phase selection is of equal probability. Then,

𝑃(𝑈𝑖) = 𝐶𝑁
1 ∙ 𝑝𝑖 ∙ (1 − 𝑝𝑖)

𝑁−1 ∙
1

𝑁
+ 𝐶𝑁

2 ∙ 𝑝𝑖
2 ∙ (1 − 𝑝𝑖)

𝑁−2 ∙
2

𝑁
+⋯+ 𝐶𝑁

𝑁 ∙ 𝑝𝑖
𝑁 ∙
𝑁

𝑁

∑𝐶𝑁
𝑗
∙ 𝑝𝑖

𝑗 ∙ (1 − 𝑝𝑖)
𝑁−𝑗 ∙

𝑗

𝑁

𝑁

𝑗=1

Here we know

𝐶𝑁
𝑗
∙ 𝑝𝑖

𝑗 ∙ (1 − 𝑝𝑖)
𝑁−𝑗 ∙

𝑗

𝑁
=

𝑁!

𝑗! ∙ (𝑁 − 𝑗)!
∙ 𝑝𝑖

𝑗 ∙ (1 − 𝑝𝑖)
𝑁−𝑗 ∙

𝑗

𝑁

=
(𝑁 − 1)!

(𝑗 − 1)! ∙ (𝑁 − 𝑗)!
∙ 𝑝𝑖

𝑗 ∙ (1 − 𝑝𝑖)
𝑁−𝑗

= 𝑝𝑖 ∙ 𝐶𝑁−1
𝑗−1

∙ 𝑝𝑖
𝑗−1 ∙ (1 − 𝑝𝑖)

𝑁−𝑗

Then

𝑃(𝑈𝑖) =∑𝑝𝑖 ∙ 𝐶𝑁−1
𝑗−1

∙ 𝑝𝑖
𝑗−1 ∙ (1 − 𝑝𝑖)

𝑁−𝑗

𝑁

𝑗=1

= 𝑝𝑖 ∙∑𝑝𝑖 ∙ 𝐶𝑁−1
𝑗−1

∙ 𝑝𝑖
𝑗−1 ∙ (1 − 𝑝𝑖)

𝑁−𝑗

𝑁

𝑗=1

= 𝑝𝑖 ∙ (𝑝𝑖 + 1 − 𝑝𝑖)
𝑁−1 = 𝑝𝑖

Now we prove the equivalency of probability in two-phase leader selection and direct

selection.

