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Introduction 

Consensus is the most critical component of any blockchain system. It is the 

foundational layer which guarantees the stability and safety of the network. Bitcoin 

introduced the first blockchain consensus protocol secured by Proof of Work (PoW) 

through which a block producer continuously computes new hashes until it meets the 

criteria predefined for a valid block. As PoW consensus is computationally intensive, 

the energy consumption inherent in PoW systems has become a major concern. To 

address this issue, alternative protocols secured by stake rather than computational 

power have been proposed. Proof of Stake has since become the most widely studied 

and generally accepted alternative to PoW, and we believe that it is the right direction 

for the future of blockchain consensus. We have carried out intensive research into 

recently proposed protocols such as Ouroboros[1], Dfinity[2], and others. Based on the 

theoretical paradigms of the aforementioned protocols, we have developed Galaxy 

consensus through adjusting cryptographic functions, tuning staking parameters, and 

optimizing block generation. In Galaxy consensus we also introduce an innovative 

delegation mechanism which has been implemented for the Wanchain blockchain as a 

Proof of Concept (POC). 

Galaxy Consensus Innovation: 

First, we have made a rational staking design to simulate coin age in account models 

and ensure the stability of consensus participants. Rather than being passively selected, 

WAN holders must register to participate in Galaxy consensus. This ensures that a larger 

portion of participants are active and not “sleepy”[3], which serves to improve the 

stability of the network. 

Second, we have designed a novel and secure random number generation algorithm to 

support block proposer selection and other random number usage, which will introduce 

entropy and ensure the security of the entire protocol.   

Third, we have designed a ULS (unique leader selection) algorithm for unique block 

proposer selection. In contrast with other selection algorithms, such as VRF, this design 

achieves both anonymity of block proposers and low probability of natural forking. 



Fourth, we have designed a triple ECDSA proxy signature scheme to implement a 

robust delegation mechanism. This makes it easy for users with only a small amount of 

WAN to participate in consensus and attracts more stake to the PoS protocol.   

Fifth, we have designed a fair and rational incentive mechanism to encourage honest 

behavior and punish malicious behavior. The incentive mechanism contributes to a 

healthy stake distribution to prevent stake centralization.    

Paper Outline: 

We present the design of Wanstake in Section 1. Wanstake is a representation of an 

account's stake in the PoS system, determined by the amount of WAN held in addition 

to the length of time it is held for. In Section 2 we describe the core protocol of Galaxy 

consensus, including random number generation and the unique leader selection 

algorithm. Our delegation mechanism and incentive mechanism are presented in 

Section 3 and Section 4. In Section 5 we discuss the resilience of the protocol under 

various attacks. In Section 6, we describe the strengths of Galaxy consensus. 

1 Wanstake Design 

1.1 Design Overview 

All proof of stake (PoS) schemes aim to solve the problem of reaching consensus in a 

decentralized way among all participants. However, many existing PoS schemes fail to 

address a number of concerns which are of great importance to modern public 

blockchains, such as the stability and activeness of consensus participants, distribution 

of stake, etc. Our design approach aims to address these concerns by accomplishing the 

goals listed below, which are of great practical importance for an effective PoS scheme. 

 High stability – Consensus participants should consistently remain online and 

participate in the consensus protocol. 

 Active participation – Rather than being passively selected by the consensus 

algorithm to be a block proposer, consensus participants must register on their own 

initiative in order to participate. In this way, the participants are ensured to be 

highly active and are unlikely to be offline and thereby violate the PoS algorithm. 

 Independence of participants – Participants will not get extra benefit by splitting 

tokens in different accounts or cooperating with other participants to pool their 

tokens together. 

 Healthy stake distribution – A healthy stake distribution is neither too 



concentrated nor too dispersed. The protocol should encourage WAN holders to 

contribute as many tokens as possible to the PoS scheme, but there also must be a 

way to limit the influence of large WAN holders (such as exchanges) in order to 

prevent their control of the consensus process. 

1.2 Wanstake 

Definitions: 

WAN – Native token of Wanchain. WAN is converted to Wanstake by being locked in 

a special smart contract (consensus smart contract). 

Wanstake – Wanstake is generated by staking WAN. The more WAN and the longer 

they are locked in the staking contract, the more Wanstake will be generated. 

Stake Ratio – An individual’s Wanstake proportion compared to the total Wanstake. 

CSC – Short for consensus smart contract. WAN holders lock WAN in the CSC for a 

chosen period of time to get Wanstake. 

𝑯 function – A function to calculate the amount of Wanstake of consensus participants.  

WAN holders participate in the Wanchain PoS scheme by sending a certain amount of 

WAN to the consensus smart contract to be locked for a period specified by the WAN 

holder. Wanstake will then be calculated at a rate according to both the amount of WAN 

staked, and also the length of time WAN is held in the consensus smart contract. The 

amount of Wanstake generated is not constant over the staking period, rather, the 

amount of remaining time in the locking period influences the amount of Wanstake 

generated throughout the staking period.  It can be assumed that participants will be 

more and more honest and stable closer to the end of the locking period. Accounts with 

Wanstake will be selected to participate in the consensus by the protocol with a 

probability proportional to their Wanstake ratio. When the locking time finishes, the 

stakeholders lose the right to participate in PoS consensus, and their WAN will be 

returned to the original account after a set period of time. 



 

Figure1: From WAN to probability to be selected 

 

As shown above, the 𝐻 function is important for calculating the amount of Wanstake 

rewarded. In order to achieve the goals listed in the design overview, the 𝐻 function 

should satisfy several properties: 

𝜔 denotes the amount of WAN to be locked 

𝐿 denotes the locking time. 

𝑡 denotes the ratio of remaining locking time to total locking time, which starts with 1 

and ends with 0. 

Property 1.  Monotonous increasing for 𝜔 and 𝐿 

𝐻(𝜔1, 𝐿, 𝑡) > 𝐻(𝜔2, 𝐿, 𝑡), when 𝜔1 > 𝜔2 

𝐻(𝜔, 𝐿1, 𝑡) > 𝐻(𝜔, 𝐿2, 𝑡), when 𝐿1 > 𝐿2 

This property implies that WAN holders get more Wanstake by locking more WAN for 

a longer time, which contributes to the goal of highly stable participants. 

Property 2.  Monotonous decreasing for 𝑡 

𝐻(𝜔, 𝐿, 𝑡1) < 𝐻(𝜔, 𝐿, 𝑡2), when 𝑡1 > 𝑡2 

This property implies that a participant’s reliability increases during participation time, 

since their honest behavior is made evident over the period of participation.  



Property 3.  Linear for 𝜔 

𝐻(𝜔1 + 𝜔2, 𝐿, 𝑡) = 𝐻(𝜔1, 𝐿, 𝑡) + 𝐻(𝜔2, 𝐿, 𝑡) 

This property implies that WAN holders cannot get extra Wanstake by splitting their 

WAN in multiple accounts. 

Property 4.  Integral concave for 𝐿 

∫ 𝐻(𝜔, 𝐿1 + 𝐿2, 𝑡)𝑑𝑡′ > ∫ 𝐻(𝜔, 𝐿1, 𝑡)𝑑𝑡′ + ∫ 𝐻(𝜔, 𝐿2, 𝑡)𝑑𝑡′
𝐿2

 𝑡′=0

𝐿1

 𝑡′=0

𝐿1+𝐿2

𝑡′=0

 

Notice that 𝑡′ here is the total elapsed time during the locking period and 𝑡 =
𝐿−𝑡′

𝐿
. This 

property implies that we encourage one longer participation period rather than two 

shorter participation periods. 

A candidate function which satisfies the 4 properties above would be  

𝐻(𝜔, 𝐿, 𝑡) = 𝜔𝜎𝐿𝑒
−𝑡 

Where 𝜎𝐿 is an increasing function of 𝐿. In this case property 4 could be satisfied and 

it will be proved in Appendix 1. 

2 Core Protocol 

2.1 Notions and Assumptions 

In order to describe our protocol, we will first introduce some notions and assumptions 

below: 

Community – The group of PoS protocol participants. The protocol members update 

in a constant period. 

Slot – A discrete time unit indexed by an integer 𝑖, denoted as 𝑠𝑙𝑜𝑡𝑖. The slots are listed 

continuously. In our protocol, there is at most one block proposed in each slot.  

Slot Leader – The valid block proposer in a slot. In our protocol, there is only one 

protocol participant selected to be the valid proposer. 

Epoch – An epoch consists of a set of adjacent slots with constant size. In the start of 

each epoch, consensus participants will be randomly selected from the Community to 

form a random number proposer group, and the group will work together to generate a 

random number. Within each epoch, participants will be randomly chosen from the 

Community to form a block proposer group which will propose and generate blocks. 



The cycle of epochs continues indefinitely, and the protocol is executed once in each 

epoch. 

Epoch Leader – There is a group of Epoch Leaders for each epoch. Epoch Leaders are 

selected from the Community, and Slot Leaders are selected from Epoch Leaders. 

Epoch leaders for 𝑒𝑝𝑜𝑐ℎ𝑛 are selected at the beginning of 𝑒𝑝𝑜𝑐ℎ𝑛−1. 

Random Number Proposer – There is a group of Random Number Proposers for each 

epoch. Random Number Proposers are selected from the Community and in charge for 

generating a random number for each epoch. 

Random Beacon – The random generator simulated by the Random Number Proposer 

Group. It outputs a random number in each epoch. 

Security Parameter – This parameter is denoted as 𝑘. The security parameter affects 

the data certainty. The block data will be stable if it is more than 𝑘 blocks deep.  

The security of our protocol is guaranteed under the following assumptions: 

World Time – Users are equipped with (roughly synchronized) clocks that indicate the 

current slot.  

Honest Stake Majority – the total stake held by the Community ensures an honest 

majority, which means that more than half of the total stake belongs to honest 

participants. 

Semi-synchronous Network – There is a maximum delay that is applied to message 

delivery and it is unknown to the protocol participants. 

Community Corruption Delay – There is a minimum delay when a malicious 

Community member wants to corrupt an honest one. 

2.2 Protocol Overview 

As introduced in the above section, we separate the definition of WAN and Wanstake 

since a large portion of WAN holders are offline, and can therefore be considered 

“sleepy”. We need to know who wants to participate in the protocol to ensure consensus 

can be reached, so we require participants to register in the Community by locking a 

specified amount of WAN in the consensus smart contract. This contributes to 

increasing the stability and activeness of participants.  

The generation of random numbers is significant for consensus protocol design, 

especially when it comes to random selection. We designed a random generation 

algorithm to simulate a random beacon. This algorithm is run once in an epoch by the 

Random Number Proposer Group chosen from the Community, and the result will be 



used in 3 aspects: (i) as a random seed for the Random Number Proposer Group 

selection of the current epoch, (ii) as a random seed for the Epoch Leader selection of 

next epoch, (iii) as a random seed used to set the order of the Epoch Leaders of this 

epoch.  

In contrast to BFT-based protocols, our protocol is chain-based. The main design 

challenge is leader selection. Other PoS protocols usually use VRFs to realize the 

selection which means there may be several leaders corresponding to one slot or even 

none at all. We wanted to design a selection algorithm to guarantee that there is only 

one leader corresponding to one slot. In order to prevent the leader being known 

publicly in advance, the Epoch Leader Group will generate a secret message to 

determine the right to propose a block, which can be verified publicly after block 

production, but is unknown to other users. This reduces corruption risk. In order to 

prevent grinding attacks, the Slot Leader sequence will be fixed at the beginning of the 

next epoch by the random beacon. So, the secret message generation will be done before 

random beacon updates. 

In general, our protocol sequence is as follows: (i) a Community responsible for  

consensus is formed by protocol participants, (ii) at the beginning of each epoch, a 

Random Number Proposer Group and an Epoch Leader Group (for the next epoch) are 

selected from the Community using a random number from the random beacon, (iii) 

the Random Number Proposer Group generates a new random number to update the 

random beacon in the current epoch, (iv) the Epoch Leader Group generates a secret 

verifiable message unknown to others in this epoch, (v) the Epoch Leader Group 

determined at the beginning of the previous epoch runs a selection algorithm to 

determine the unique leader of each slot in the current epoch who proposes block.  

2.3 Random Beacon 

2.3.1 Design Background 

The core task of any consensus scheme is to ensure that the whole network agrees on 

who will be the next block proposer. This is generally referred to as the leader selection 

process. A fair and randomized leader selection process is the basis of the chain’s 

liveness. To achieve fairness and randomness, entropy must be introduced into the 

system. PoW introduces entropy naturally because the secure hash function (SHA256) 

used in mining is one-way direction and collision-free. There is no better solution to 

solve the hash puzzle than to try as many different inputs as possible, which is called 

method of exhaustion. The first party to solve the hash puzzle has the right to propose 

a block. It is clearly fair and randomized. However, for PoS, introducing entropy into 



the leader selection process is one of the main design challenges. There is no natural 

random source for a decentralized system, so we must create one. That is the random 

beacon. 

The random beacon is the basis of a secure PoS system. A good random beacon should 

satisfy several properties: 

 Distributed – There must be no trusted third party involved in the production 

process of the random beacon.  

 Unpredictable – Given knowledge of all prior output, no one has an advantage in 

predicting future output. 

 Unbiased – No one can bias the output of the random beacon using computation 

resources or advantages of backwardness. 

 Uniformity – The output of the random beacon has a uniform distribution in its 

domain. 

 G.O.D (Guaranteed Output Delivery) - Once the process starts, no one can 

prevent the output by aborting the protocol. 

 Publicly verifiable – Parties that do not necessarily participate in randomness 

generation but wish to audit the protocol execution must be able to attest a 

posteriori that the randomness source is reliable and unbiased. 

Random Beacon design: 

To design a random beacon which fits our PoS scheme in accordance with the properties 

outlined above, our efforts are focused on two areas. First, we use the blockchain as a 

trusted broadcast channel. All the participants exchange data through the blockchain. 

In this way, there is no need to set up a new communication channel among the 

participants, and this saves bandwidth. Additionally, posting data on the blockchain 

ensure its correctness. Second, we use several cryptographic tools. Verifiable secret 

sharing makes it distributed and publicly verifiable. The threshold signature scheme 

makes it unpredictable, unbiased and G.O.D. Hash functions make the output uniformly 

distributed. 

2.3.2 Preliminaries 

Elliptic Curve 

Let 𝑝  be a prime number, and 𝐹𝑝  the finite field with 𝑝  elements. An elliptic curve 

𝐸(𝐹𝑝) is the set of points (𝑥, 𝑦) over 𝐹𝑝 to an equation of form 𝐸: 𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 =



𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥 + 𝑎6  where 𝑎𝑖 ∈ 𝐹𝑝 , together with an additional point at infinity, 

denoted 𝑂. There exists an abelian group law of addition on 𝐸. Explicit formulas for 

computing the coordinates of a point 𝑃3 = 𝑃1 + 𝑃2 from the coordinates of 𝑃1 and 𝑃2 

are given in [4]. 

The number of points of an elliptic curve 𝐸(𝐹𝑝), denoted #𝐸(𝐹𝑝), is called the order of 

the curve over 𝐹𝑝. Let 𝑛 = #𝐸(𝐹𝑝). The order of a point 𝐺 ∈ 𝐸(𝐹𝑝) is the least nonzero 

integer 𝑟 such that 𝑟𝐺 = 𝑂. Actually, multiples of 𝐺 construct a cyclic group of order 

𝑟, and this is the group generated by 𝐺 we use in our protocol. A user 𝑈𝑖 generates a 

key pair (𝑝𝑘𝑖, 𝑠𝑘𝑖), where 𝑝𝑘𝑖 is the public key, 𝑠𝑘𝑖 is the secret key and 𝑝𝑘𝑖 = 𝑠𝑘𝑖 ∙ 𝐺. 

Informally 𝑝𝑘𝑖 denotes 𝑈𝑖. More details about elliptic curve cryptography can be found 

in [4]. 

Shamir’s Threshold Secret Sharing 

Suppose 𝑃  makes a (𝑡, 𝑛)  threshold secret sharing of secret 𝑠  for 𝑃1 ,𝑃2 , ,, 𝑃𝑛 . 𝑃 

performs as follows: 

 Choose a random polynomial of degree 𝑡 − 1，𝑓(𝑥) = 𝑠 + 𝑎1𝑥 +⋯+ 𝑎𝑡−1𝑥
𝑡−1. 

 Randomly select distinct numbers 𝑥1, 𝑥2… , 𝑥𝑛 , and compute 𝑓(𝑥1), 𝑓(𝑥2)… ,

𝑓(𝑥𝑛). 

 Send 𝑃𝑖 the secret share 𝑠𝑖 = (𝑥𝑖 , 𝑓(𝑥𝑖)), 𝑖 = 1,2,⋯ , 𝑛. 

Any 𝑘 ≥ 𝑡 parties could work together to reconstruct 𝑠: 

𝑠 =∑𝑓(𝑥𝑖) ∏
𝑥𝑗

𝑥𝑗 − 𝑥𝑖

𝑘

𝑗=1,𝑗≠𝑖

𝑘

𝑖=1

 

More details about Shamir’s threshold secret sharing can be found in [5] [6] [7]. 

Threshold Signatures 

In a (𝑡, 𝑛) threshold signature scheme, 𝑛 parties jointly set up a public key (the group 

public key) and each party retains an individual secret (the secret key share). After this 

setup, 𝑡  out of the 𝑛  parties are required and sufficient for creating a signature (the 

group signature) that validates against the group public key. 

A Pairing Based Digital Signature Scheme 

This signature scheme is a unique, non-interactive, pairing-based scheme. These 

properties make it suitable for a random beacon. 

𝐺1 , 𝐺2  are two cyclic subgroups of an elliptic curve with the same order 𝑞 , 𝐺𝑇  is a 



cyclic subgroup of finite field. 𝑔1 ,𝑔2 ,𝑔𝑇  are generators of 𝐺1 , 𝐺2 , 𝐺𝑇 . 𝐻  is a hash 

function: {0,1}∗ → 𝐺1. 𝑒 is a non-degenerate, bilinear pairing: 𝐺1 × 𝐺2 → 𝐺𝑇. Private 

key 𝑠𝑘 ∈ (1, 𝑞), public key 𝑝𝑘 = 𝑠𝑘 ∙ 𝑔2. Then the signing and verifying algorithm are 

as follows: 

𝑃𝐵𝑠𝑖𝑔𝑛(𝑠𝑘,𝑀) = 𝑠𝑘 ∙ 𝐻(𝑀) 

𝑃𝐵𝑣𝑒𝑟𝑖𝑓𝑦(𝑝𝑘,𝑀, 𝜎) tests whether 𝑒(𝜎, 𝑔2) = 𝑒(𝐻(𝑀), 𝑝𝑘) 

Reed-Solomon Code 

We use Reed-Solomon code with the following form: 

𝐶 = {(𝑝(1), 𝑝(2),⋯ , 𝑝(𝑛)): 𝑝(𝑥) ∈ 𝑍𝑝[𝑥], 𝑑𝑒𝑔𝑝(𝑥) ≤ 𝑡 − 1} 

Where 𝑝(𝑥) ranges over all polynomials in 𝑍𝑝[𝑥] with degree at most 𝑡 − 1. 

At the same time, we define its dual code as follows: 

𝐶⊥ = {(𝑣1𝑓(1), 𝑣2𝑓(2),⋯ , 𝑣𝑛𝑓(𝑛)): 𝑓(𝑥) ∈ 𝑍𝑝[𝑥], 𝑑𝑒𝑔𝑓(𝑥) ≤ 𝑛 − 𝑡 − 1} 

For the coefficients 𝑣𝑖 = ∏
1

𝑖−𝑗

𝑛
𝑗=1,𝑗≠𝑖  

Thus, the following lemma exists: 

Lemma:  If 𝑣 ∈ 𝑍𝑞
𝑛, and 𝑐⊥ is chosen uniformly at random in 𝐶⊥, then the probability 

that < 𝑣, 𝑐⊥ > = 0 is exactly 
1

𝑝
 . 

More details about Reed-Solomon Code can be found in [8] 

Zero-Knowledge Proofs of Discrete Logarithm Knowledge 

Based on the DDH assumption in the random oracle model, there is a zero-knowledge 

proof of knowledge of a value 𝛼 ∈ 𝑍𝑝 such that 𝑥 = 𝑔
𝛼 and 𝑦 = ℎ𝛼 given 𝑔, 𝑥, ℎ, 𝑦. 

We denote this proof by 𝐷𝐿𝐸𝑄(𝑔, 𝑥, ℎ, 𝑦). It is constructed by Chaum and Pedersen in 

[9] and its detail is in Appendix 2. 

2.3.3 Random Beacon 

𝐺1, 𝐺2 are two cyclic subgroups of an elliptic curve with generator 𝐺 and 𝐺̅. 𝑒 is a non-

degenerate, bilinear pairing: 𝐺1 × 𝐺2 → 𝐺𝑇. Suppose there is 𝑛 parties participating in 

the random beacon process, namely 𝑃𝑖  with key pair (𝑠𝑘𝑖 , 𝑝𝑘𝑖 = 𝑠𝑘𝑖 ∙ 𝐺) . In the 

following part, we will describe the detail of Galaxy consensus random beacon. 

The random beacon divides an epoch into three stages, DKG1 stage, DKG2 stage and 



signing stage. DKG is short for decentralized key generation, and in DKG1 stage all 

the participants make commitments for the data submitted in DKG2 stage, where they 

work together to generate the group public key and group secret key shares. In signing 

stage, every participant computes its group signature share using the group secret key 

share. Finally, the group signature derives the random output. 

 

DKG1 Stage 

In this stage, every participant performs as follows (take 𝑃𝑖 as an example) : 

 Randomly select 𝑠𝑖 ∈ (1, 𝑞). 

 Choose a random polynomial of degree 𝑡 − 1，𝑓𝑖(𝑥) = 𝑠𝑖 + 𝑎𝑖,1𝑥 +⋯+

𝑎𝑖,𝑡−1𝑥
𝑡−1. 

 Compute 𝑠𝑖,𝑗 = 𝑓𝑖(ℎ𝑗), ℎ𝑗 = 𝐻𝑎𝑠ℎ(𝑝𝑘𝑗), for 𝑗 = 1,2,⋯ , 𝑛. 

 Make commitment: 𝑐𝑖,𝑗 = 𝑠𝑖,𝑗 ∙ 𝐺̅, for 𝑗 = 1,2,⋯ , 𝑛. 

 𝑃𝑖 send a special transaction 𝐷𝐾𝐺1𝑇𝑥𝑖 with the payload  

[(𝑝𝑘1, 𝑝𝑘2, ⋯ , 𝑝𝑘𝑛), (𝑐𝑖,1, 𝑐𝑖,2, ⋯ , 𝑐𝑖,𝑛)] 

 

Verification Logic for 𝐷𝐾𝐺1𝑇𝑥𝑖 

When receiving 𝐷𝐾𝐺1𝑇𝑥𝑖, do the following verification: 

 Randomly choose 𝑐⊥ = (𝑐1
⊥, 𝑐2

⊥, ⋯ , 𝑐𝑛
⊥) ∈ 𝐶⊥ 

 Compute ∑ 𝑐𝑗
⊥ ∙𝑛

𝑗=1 𝑐𝑖,𝑗, and check whether it is the point at infinity, if yes, valid. 

 

DKG2 Stage 

In this stage, every participant performs as follows (take 𝑃𝑖 as an example, 𝑠𝑖,𝑗 and 

𝑐𝑖,𝑗 are generated in DKG1 stage): 

 Encrypt: 𝑠𝑖,𝑗̃ = 𝑠𝑖,𝑗 ∙ 𝑝𝑘𝑗, for 𝑗 = 1,2,⋯ , 𝑛. 

 Generate proof: 𝑝𝑟𝑜𝑜𝑓𝑖,𝑗 = 𝐷𝐿𝐸𝑄(𝐺̅, 𝑐𝑖,𝑗, 𝑝𝑘𝑗, 𝑠𝑖,𝑗̃), for 𝑗 = 1,2,⋯ , 𝑛. 

 𝑃𝑖 send a special transaction 𝐷𝐾𝐺2𝑇𝑥𝑖 with the payload  

[(𝑝𝑘1, 𝑝𝑘2, ⋯ , 𝑝𝑘𝑛), (𝑠𝑖,1̃, 𝑠𝑖,2̃, ⋯ , 𝑠𝑖,𝑛̃), (𝑝𝑟𝑜𝑜𝑓𝑖,1, ⋯ , 𝑝𝑟𝑜𝑜𝑓𝑖,𝑛)] 



Verification Logic for 𝐷𝐾𝐺2𝑇𝑥𝑖 

When receiving 𝐷𝐾𝐺2𝑇𝑥𝑖, do the following verification: 

 Verify 𝑝𝑟𝑜𝑜𝑓𝑖,𝑗 is valid, for 𝑗 = 1,2,⋯ , 𝑛. 

 

Get Group Secret Key Share 

𝑃𝑖 performs as follows to get its group secret key share: 

 Scan all the transactions 𝐷𝐾𝐺2𝑇𝑥𝑗to get 𝑠𝑗,𝑖̃ for 𝑗 = 1,2,⋯ , 𝑛. 

 Decrypt: 𝑠𝑗,𝑖̂ = 𝑠𝑘𝑖
−1 ∙ 𝑠𝑗,𝑖̃, for 𝑗 = 1,2,⋯ , 𝑛. 

 Compute 𝑔𝑠𝑘𝑠ℎ𝑎𝑟𝑒𝑖 = ∑ 𝑠𝑗,𝑖̂
𝑛
𝑗=1 . 

 

Signing Stage 

In this stage, 𝑃𝑖 computes its group signature share as follows: 

 Compute 𝑀 = 𝐻𝑎𝑠ℎ(𝑟||𝜍𝑟−1), 𝑟 is the index of current epoch, 𝜍𝑟−1 is the 

output of random beacon in epoch 𝑟 − 1, 𝐻𝑎𝑠ℎ() is a common hash function 

 Compute 𝑔𝑠𝑖𝑔𝑠ℎ𝑎𝑟𝑒𝑖 = 𝑀 ∙ 𝑔𝑠𝑘𝑠ℎ𝑎𝑟𝑒𝑖 

𝑃𝑖 send a special transaction 𝑆𝐼𝐺𝑇𝑥𝑖 with the payload 𝑔𝑠𝑖𝑔𝑠ℎ𝑎𝑟𝑒𝑖 

 

Verification Logic for 𝑆𝐼𝐺𝑇𝑥𝑖 

When receiving 𝑆𝐼𝐺𝑇𝑥𝑖, do the following verification: 

 Scan all the transactions 𝐷𝐾𝐺1𝑇𝑥𝑗to get 𝑐𝑗,𝑖 for 𝑗 = 1,2,⋯ , 𝑛. 

 Compute 𝑔𝑝𝑘𝑠ℎ𝑎𝑟𝑒𝑖 = ∑ 𝑐𝑗,𝑖
𝑛
𝑗=1  

 Compute 𝑀 = 𝐻𝑎𝑠ℎ(𝑟||𝜍𝑟−1), 𝑟 is the num of current epoch, 𝜍𝑟−1 is the output 

of random beacon in epoch 𝑟 − 1. 

 Check whether 𝑒(𝑔𝑠𝑖𝑔𝑠ℎ𝑎𝑟𝑒𝑖, 𝐺̅) = 𝑒(𝑀 ∙ 𝐺, 𝑔𝑝𝑘𝑠ℎ𝑎𝑟𝑒𝑖), if equal, it’s valid. 

 

 



The Computation of 𝜍𝑟 

When epoch 𝑟 gets to the end, the output of the random beacon is 𝜍𝑟 and is 

computed as follows: 

 Scan all the transactions 𝑆𝐼𝐺𝑇𝑥𝑖 and get 𝑔𝑠𝑖𝑔𝑠ℎ𝑎𝑟𝑒𝑖, for 𝑖 = 1,2,⋯ , 𝑛. 

 Compute 𝑔𝑠𝑖𝑔 = ∑ ∏
ℎ𝑗

ℎ𝑗−ℎ𝑖
𝑗≠𝑖

𝑛
𝑖=1 𝑔𝑠𝑖𝑔𝑠ℎ𝑎𝑟𝑒𝑖, where ℎ𝑠 = 𝐻𝑎𝑠ℎ(𝑝𝑘𝑠), for 

𝑠 = 1,2,⋯ , 𝑛. 

 Scan all the transactions 𝐷𝐾𝐺1𝑇𝑥𝑖to get 𝑐𝑗,𝑖 for 𝑖 = 1,2,⋯ , 𝑛, 𝑗 = 1,2,⋯ , 𝑛. 

 Compute 𝑔𝑝𝑘 = ∑ (∏
ℎ𝑗

ℎ𝑗−ℎ𝑖
)𝑗≠𝑖 (∑ 𝑐𝑠,𝑖

𝑛
𝑠=1 )𝑛

𝑖=1 , where ℎ𝑠 = 𝐻𝑎𝑠ℎ(𝑝𝑘𝑠), for 𝑠 =

1,2,⋯ , 𝑛. 

 Check whether 𝑒(𝑔𝑠𝑖𝑔, 𝐺̅) = 𝑒(𝑀 ∙ 𝐺, 𝑔𝑝𝑘), if not, pause. 

 Else compute 𝜍𝑟 = 𝐻𝑎𝑠ℎ(𝑔𝑠𝑖𝑔). 

 

 

Figure2: Random Beacon working flow 

 

2.5 Epoch Leaders Selection 

At the beginning of each epoch, we select the Epoch Leaders of the next epoch 

according to the participants’ stake distribution 𝑘  blocks before. Actually, as stated 

above we select the group by the probability determined by the participant’s stake. We 

implement follow-the-stake-rate to simulate the selection process, which is just like 



follow-the-satoshi.  

We calculate the stake ratio corresponding to each protocol participant in the 

Community, the total stake ratio in sum will be 1. Then we construct a binary search 

tree whose leaf nodes are keyed by (a hash of) their public key, and the value of each 

tree node is the sum of stake ratio in its subtree. If 𝑟 is the random number output by 

the Random Beacon, we calculate 𝑐𝑥𝑖 ≡ ℎ𝑎𝑠ℎ𝑖  where 𝑁  is the number of Epoch 

Leader group members and ℎ𝑎𝑠ℎ𝑖() denotes the ith repeated hash execution. We invoke 

the ith selection by starting to traverse from the root, branching to the first child if its 

value is greater than 𝑐𝑥𝑖, otherwise branching to the second child and update 𝑐𝑥𝑖 by 

minus the first child’s value until it reaches the leaf node. After 𝑁 executions, the Epoch 

Leader group is selected. We emphasize that the group is a multiset which means that a 

protocol participant may be selected more than once. Meanwhile, the Random Number 

Proposer Group is selected in this way too, except for 𝑐𝑥𝑖 ≡ ℎ𝑎𝑠ℎ𝑖.   

We select the Epoch Leaders according to the participant’s stake ratio, and we will 

select the unique Slot Leader by equal probability. It is important to prove that the 

probability of a participant to be selected as a Slot Leader is the same in this two-phase 

selection as with the direct selection. We give the proof in Appendix 3. 

2.6 Unique Slot Leader Selection 

After Epoch Leader selection, the selected participants need to generate a secret 

message in this epoch to prepare for the unique Slot Leader selection of the next epoch. 

Assume 𝑒𝑝𝑜𝑐ℎ𝑙𝑒𝑎𝑑𝑒𝑟𝑠 = {𝑃1, 𝑃2, … , 𝑃𝑁} , and their key pairs are denoted by 

{(𝑝𝑘1, 𝑠𝑘1), (𝑝𝑘2, 𝑠𝑘2), … , (𝑝𝑘𝑁 , 𝑠𝑘𝑁)}, The 2 stages in the secret message generation 

are as follows: 

Stage 1 

In this stage, every participant performs as follows (take 𝑃𝑖 as an example): 

 Randomly select 𝛼𝑖 ∈ (1, 𝑞). 

 Compute 𝑀𝑖 = 𝛼𝑖 ∙ 𝑝𝑘𝑖. 

 𝑃𝑖 send a special transaction 𝑆𝑡𝑎𝑔𝑒1𝑇𝑥𝑖 with the payload 𝑀𝑖. 

Remarks: This commitment guarantees that the random number generated once could 

not be changed again 

 



Stage 2 

In this stage, every participant performs as follows (take 𝑃𝑖 as an example): 

 Compute 𝛼𝑖 ∙ 𝑝𝑘1, for 𝑖 = 1,2,⋯ , 𝑁. 

 Construct 𝐴𝑖 = (𝛼𝑖 ∙ 𝑝𝑘1, 𝛼𝑖 ∙ 𝑝𝑘2, … , 𝛼𝑖 ∙ 𝑝𝑘𝑁). 

 Compute 𝜋𝑖 = 𝐷𝐿𝐸𝑄(𝑝𝑘1, 𝛼𝑖 ∙ 𝑝𝑘1, 𝑝𝑘2, 𝛼𝑖 ∙ 𝑝𝑘2, … , 𝑝𝑘𝑁 , 𝛼𝑖 ∙ 𝑝𝑘𝑁). 

 𝑃𝑖 send a special transaction 𝑆𝑡𝑎𝑔𝑒2𝑇𝑥𝑖 with the payload 𝐴𝑖 and 𝜋𝑖 

Remarks: The proof 𝜋𝑖  here makes sure that 𝛼𝑖  stays the same in the scalar 

multiplication of different public keys. Details are in Appendix 2. 

 

Verification Logic for 𝑺𝒕𝒂𝒈𝒆𝟐𝑻𝒙𝒊 

 the proof 𝜋 is valid 

 the ith data of 𝐴𝑖 is the same as 𝑀𝑖, e.g. 𝐴𝑖[𝑖] = 𝑀𝑖. 

 

Computation of the Common Secret Message 

𝑃𝑗 performs as follows to get the common secret message: 

 Scan all the 𝑆𝑡𝑎𝑔𝑒2𝑇𝑥𝑖 to get 𝛼𝑖 ∙ 𝑝𝑘𝑗, for 𝑖 = 1,2,⋯ ,𝑁. 

 Construct 𝑆𝑗̅ = (𝛼1 ∙ 𝑝𝑘𝑗 , 𝛼2 ∙ 𝑝𝑘𝑗 , … , 𝛼𝑁 ∙ 𝑝𝑘𝑗). 

 Compute 𝑆 = 𝑠𝑘𝑗
−1 ∙ 𝑆𝑗̅ = (𝑠𝑘𝑗

−1 ∙ 𝛼1 ∙ 𝑝𝑘𝑗 , 𝑠𝑘𝑗
−1 ∙ 𝛼2 ∙ 𝑝𝑘𝑗 , … , 𝑠𝑘𝑗

−1 ∙ 𝛼𝑁 ∙

𝑝𝑘𝑗) = (𝛼1 ∙ 𝐺, 𝛼2 ∙ 𝐺, … , 𝛼𝑁 ∙ 𝐺) 

 

Unique Leader Selection Algorithm 

At the beginning of the next epoch, the Slot Leaders will be selected by 𝑆 and the 

random number from the random beacon is generated as follows: 

 Sort all Epoch Leaders by ℎ𝑎𝑠ℎ(𝑟||𝑝𝑘𝑖), where 𝑟 is the random output from the 

random beacon and 𝑝𝑘𝑖  is the public key of 𝑃𝑖 . We set the Epoch Leader 

sequence as 𝑠𝑞 = (𝑃1
′, 𝑃2

′ , … , 𝑃𝑁
′ ),  it is a multisequence. 

 Calculate a random number matrix 𝑀 = (𝑠𝑟𝑖𝑗)𝑛×𝑁 where 𝑛 is the length of an 



epoch and 

𝑠𝑟𝑖𝑗 = ℎ𝑎𝑠ℎ𝑗(𝑅𝐵||𝑒𝑝𝑜𝑐ℎ𝐼𝐷||𝑖)𝑚𝑜𝑑𝑁 

𝑐𝑟𝑖 = ℎ𝑎𝑠ℎ (∑𝛼𝑠𝑟𝑖𝑗 ∙ 𝐺

𝑁

𝑗=1

) , 𝑖 = 1,2, … , 𝑛 

 Compute 𝑐𝑠𝑖 = 𝑐𝑟𝑖 𝑚𝑜𝑑 𝑁 

 Then the Slot Leader of 𝑠𝑙𝑖 is 𝑃𝑐𝑠𝑖+1
′ . 

 

Proposing a Block  

When proposing a block, the Slot Leader 𝑃𝑐𝑠𝑡+1
′ need to attach extra data to make the 

leader selection process publicly verifiable: 

 Compute 𝐺𝑡 = ∑ 𝛼𝑠𝑟𝑡𝑗 ∙ 𝐺
𝑁
𝑗=1  

 Compute 𝜋′ = 𝐷𝐿𝐸𝑄 (𝐺, 𝑝𝑘𝑐𝑠𝑡+1, 𝐺𝑡 , ∑ 𝛼𝑠𝑟𝑡𝑗 ∙ 𝑝𝑘𝑐𝑠𝑡+1
𝑁
𝑗=1 ) 

 Attach 𝐺𝑡,𝜋
′ to the proposed block. 

 

Verification Logic for Block Leader 

When receiving 𝑏𝑙𝑜𝑐𝑘𝑡, public entities have to be able to verify the correctness of 

the Slot Leader: 

 Compute 𝑠𝑟𝑡𝑗 = ℎ𝑎𝑠ℎ𝑗(𝑅𝐵||𝑒𝑝𝑜𝑐ℎ𝐼𝐷||𝑖)𝑚𝑜𝑑𝑁, 𝑗 = 1,2, … ,𝑁 

 Scan the chain to compute 𝑠𝑘𝐺𝑡 = ∑ 𝛼𝑠𝑟𝑡𝑗 ∙ 𝑝𝑘𝑐𝑠𝑡+1
𝑁
𝑗=1 . 

 Verify 𝜋′ is valid with input of (𝐺, 𝑝𝑘𝑐𝑠𝑡+1, 𝐺𝑡, 𝑠𝑘𝐺𝑡). 

 Compute 𝑐𝑟𝑡
′ = ℎ𝑎𝑠ℎ(𝐺𝑡). 

 Compute 𝑐𝑠𝑡
′ = 𝑐𝑟𝑡

′𝑚𝑜𝑑𝑁 

 Check whether 𝑃𝑐𝑠𝑡′+1
′  match the Slot Leader which proposed 𝑏𝑙𝑜𝑐𝑘𝑡. 

Thus, the unique Slot Leader is selected from inside the Epoch Leaders and can be 

verified publicly.  

 



 

Figure3: Epoch Leader working flow 

 

 

Figure4: Stage order in an epoch 

 

3 Delegation Mechanism 

3.1 Design Background 

This section describes the design of the delegation mechanism in Galaxy consensus. 

WAN is distributed widely in different accounts with various amounts. Theoretically 

anyone holding WAN has the right to participate in the consensus process (i.e. proof of 

stake). Since the rewards of participating in consensus are proportional to the amount 

of WAN staked, for those holding a low number of WAN, there is little motivation to 

take part in consensus because the cost of being a consensus participant (being online 

all the time, listening to the network, saving chain data, etc.) outweighs the rewards. 

Thus, it is desirable to have a scheme which ensures that any WAN holder can join in 

consensus and benefit from it regardless of how many WAN they hold. Our solution is 

a delegation scheme based on proxy signature. Under this scheme, more WAN holders 



will join in the consensus and thus the network will be more strong and secure.  

Proxy signature is a practical method for delegation scheme design. A proxy signature 

protocol allows an entity, called the designator or original signer, to delegate another 

entity, called a proxy signer, to sign messages on its behalf, in case of say, temporal 

absence, lack of time or computational power, etc. The delegated proxy signer can 

compute a proxy signature that can be verified by anyone with access to the original 

signer’s certified public key. Strictly, a proxy signature is a tuple 𝑃𝑆 =

(𝐺, 𝐾, 𝑆, 𝑉, (𝐷, 𝑃), 𝑃𝑆, 𝑃𝑉, 𝐼𝐷): 

(𝐺, 𝐾, 𝑆, 𝑉) is a digital signature scheme. 

 (𝐷, 𝑃) is a pair of randomized algorithms forming the proxy-delegation protocol. 

𝐷  takes input the secret key 𝑠𝑘𝑖  of the designator 𝑖 , the identity 𝑗  of the proxy 

signer, and a message space descriptor 𝜔  for which user 𝑖  wants to delegate its 

signing rights to user 𝑗, and outputs a cert. 𝑃 takes input the cert and secret key 𝑠𝑘𝑗  

of the proxy signer and outputs proxy signing key 𝑠𝑘𝑝, which 𝑗 uses to produce 

proxy signatures on behalf of user 𝑖. 

 𝑃𝑆 is the proxy signing algorithm. It takes as input a proxy signing key 𝑠𝑘𝑝 and a 

message 𝑀 and outputs a proxy signature 𝑝𝜎. 

 𝑃𝑉 is the proxy verification algorithm. It takes as input a public key 𝑝𝑘, a message 

𝑀 and a proxy signature 𝑝𝜎, and outputs 0 or 1. In the latter case, we say that the 

proxy signature is valid for 𝑀 relative for 𝑝𝑘. 

 𝐼𝐷 is the proxy identification algorithm. It takes a valid proxy signature 𝑝𝜎 and 

outputs an identity 𝑖. 

Traditional delegation schemes operate like a mining pool, which requires the delegator 

to send its tokens to the proxy agent. After collecting all these tokens, the proxy agent 

participates in the consensus process and gets a reward which will be spilt among the 

delegators according to amounts of their delegated tokens. This scheme is centralized 

and insecure, since the proxy agent holds all the tokens and may possibly steal the 

tokens Proxy signature is naturally suitable for delegation schemes. Anyone may use 

proxy signature to delegate a trusted party to participate in the consensus on their behalf. 

The tokens are still in the designator’s pocket, and only the signing right is given out. 

This is much more secure. 

3.2 Triple ECDSA Proxy Signature Scheme 

In this part, we will introduce our proxy signature scheme which is based on ECDSA. 

We call it triple ECDSA proxy signature scheme since it uses ECDSA signatures for 



standard signing, proxy designation, and proxy signing. Assume the original signer is 

Alice with key pair (𝑝𝑘𝑖, 𝑠𝑘𝑖), proxy signer is Bob with key pair (𝑝𝑘𝑗 , 𝑠𝑘𝑗). (𝐺, 𝐾, 𝑆, 𝑉) 

is the standard ECDSA digital signature scheme. So, we focus on (𝐷, 𝑃), 𝑃𝑆, 𝑃𝑉. 

 

Algorithm 𝐷 

Alice performs the following operations to delegate the signing right to Bob: 

 Form a message space 𝜔 

 Randomly choose 𝑘 ∈ (1, 𝑞) 

 Compute 𝑅 = 𝑘𝐺 = (𝑥𝑟 , 𝑦𝑟) 

 Compute ℎ = 𝐻(𝑝𝑘𝑖||𝑝𝑘𝑗||𝜔) 

 Set 𝑟 = 𝑥𝑟 

 Compute 𝑠 = 𝑘−1(ℎ + 𝑟 × 𝑠𝑘𝑖) 

 Output 𝑐𝑒𝑟𝑡 = (𝑝𝑘𝑖, 𝑝𝑘𝑗, 𝜔, (𝑅, 𝑠)) 

 

Algorithm 𝑃 

Bob performs the following operations to get proxy signing key: 

 Parse 𝑐𝑒𝑟𝑡 = (𝑝𝑘𝑖, 𝑝𝑘𝑗 , 𝜔, (𝑅, 𝑠)) 

 Compute ℎ = 𝐻(𝑝𝑘𝑖||𝑝𝑘𝑗||𝜔) 

 Compute 𝑉(𝑝𝑘𝑖 , ℎ, (𝑅, 𝑠)), if outputs 0, 𝑐𝑒𝑟𝑡 is invalid and pause 

 Else Compute 𝑠𝑘𝑝 = 𝑠 + 𝑟 × 𝑠𝑘𝑗  

 

Algorithm 𝑃𝑆 

Bob performs the following operations to do proxy signing: 

 Message 𝑀 

 Randomly choose 𝑘𝑝 ∈ (1, 𝑞) 

 Compute 𝑅𝑝 = 𝑘𝑝𝐺 = (𝑥𝑝, 𝑦𝑝) 



 Compute ℎ𝑝 = 𝐻(𝑀) 

 Set 𝑟𝑝 = 𝑥𝑝 

 Compute 𝑠𝑝 = 𝑘𝑝
−1(ℎ𝑝 + 𝑟𝑝 × 𝑠𝑘𝑝) 

 Output 𝑝𝑟𝑜𝑥𝑦𝑠𝑖𝑔 = (𝑀, (𝑅𝑝, 𝑠𝑝), 𝑐𝑒𝑟𝑡) 

 

Algorithm 𝑃𝑉 

The third party performs the following operations to do proxy verification： 

 Parse 𝑝𝑟𝑜𝑥𝑦𝑠𝑖𝑔 = (𝑀, (𝑅𝑝, 𝑠𝑝), 𝑐𝑒𝑟𝑡) 

 Parse 𝑐𝑒𝑟𝑡 = (𝑝𝑘𝑖, 𝑝𝑘𝑗 , 𝜔, (𝑅, 𝑠)) 

 Verify 𝑀 ∈ 𝜔, if not, pause 

 Compute ℎ = 𝐻(𝑝𝑘𝑖||𝑝𝑘𝑗||𝜔) 

 Compute 𝑉(𝑝𝑘𝑖 , ℎ, (𝑅, 𝑠)), if outputs 0, 𝑐𝑒𝑟𝑡 is invalid and pause 

 Else Compute 𝑝𝑘𝑝 = 𝑠 ∙ 𝐺 + 𝑟 ∙ 𝑝𝑘𝑗, 𝑅 = (𝑥𝑟 , 𝑦𝑟), 𝑟 = 𝑥𝑟 

 Compute 𝑉 (𝑝𝑘𝑝,𝑀, (𝑅𝑝, 𝑠𝑝)), if outputs 1, 𝑝𝑟𝑜𝑥𝑦𝑠𝑖𝑔 is valid 

 

We now prove the correctness of the triple ECDSA proxy signature scheme: 

Theorem:  For any message space 𝜔, message 𝑀 ∈ 𝜔 and users 𝑖, 𝑗. User 𝑖 delegates 

user 𝑗 the signing rights for 𝜔 and user 𝑗 proxy signs 𝑀, then we have 

𝑃𝑉(𝑃𝑆(𝑠𝑘𝑝,𝑀)) = 1 

Proof: From the definition of (𝐷, 𝑃) , 𝑃𝑆 , 𝑃𝑉  we have the following equivalent 

conditions: 

𝑃𝑉(𝑃𝑆(𝑠𝑘𝑝,𝑀)) = 1 

⇔ 𝑉(𝑝𝑘𝑝,𝑀, (𝑅𝑝, 𝑠𝑝)) = 1 

   ⇔ 𝑉(𝑝𝑘𝑝,𝑀, 𝑆(𝑠𝑘𝑝,𝑀)) = 1 



⇔ 𝑝𝑘𝑝 = 𝑠𝑘𝑝 ∙ 𝐺                    

                 ⇔ 𝑠 ∙ 𝐺 + 𝑟 ∙ 𝑝𝑘𝑗 = (𝑠 + 𝑟 × 𝑠𝑘𝑗) ∙ 𝐺 

⇔ 𝑝𝑘𝑗 = 𝑠𝑘𝑗 ∙ 𝐺                      

  Observe that 𝑝𝑘𝑗 = 𝑠𝑘𝑗 ∙ 𝐺                                                                                          □  

3.3 Delegation Scheme 

Wanchain’s delegation scheme makes use of a trusted ledger based triple ECDSA proxy 

signature scheme which writes and reads data and also makes use of smart contract 

functionality. This delegation scheme is more efficient than the original triple ECDSA 

proxy signature scheme which requires an additional trusted communication channel. 

Assume Alice with key pair (𝑝𝑘𝑖, 𝑠𝑘𝑖), Bob with key pair (𝑝𝑘𝑗, 𝑠𝑘𝑗). Alice wants to 

devote 𝑎 WAN to the consensus process for a locking time of 𝑡. She wants to delegate 

her signing rights to Bob to participate in the consensus process on her behalf. We 

design a smart contract, which is named Proxy_SC, to help complete this process. 

Proxy_SC makes some calculations and stores some critical data. The whole procedure 

is as follows: 

 

Delegation scheme 

Alice performs the following operations: 

 Set message space 𝜔 =⊥ 

 Randomly choose 𝑘 ∈ (1, 𝑞) 

 Compute 𝑅 = 𝑘𝐺 = (𝑥𝑟 , 𝑦𝑟) 

 Compute ℎ = 𝐻(𝑝𝑘𝑖||𝑝𝑘𝑗||𝜔) 

 Set 𝑟 = 𝑥𝑟 

 Compute 𝑠 = 𝑘−1(ℎ + 𝑟 × 𝑠𝑘𝑖) 

 𝑐𝑒𝑟𝑡 = (𝑝𝑘𝑖 , 𝑝𝑘𝑗 , 𝜔, (𝑅, 𝑠)) 

 Send a transaction 𝑡𝑥 to Proxy_SC with payload (𝑎, 𝑡, 𝑐𝑒𝑟𝑡) 

 

After receiving 𝑡𝑥, Proxy_SC will do the following verifications and computations: 



 Parse the payload (𝑎, 𝑡, 𝑐𝑒𝑟𝑡) 

 Parse the 𝑐𝑒𝑟𝑡 = (𝑝𝑘𝑖, 𝑝𝑘𝑗, 𝜔, (𝑅, 𝑠)) 

 Verify whether 𝑝𝑘𝑖 matches the address sending 𝑡𝑥 

 Compute ℎ = 𝐻(𝑝𝑘𝑖||𝑝𝑘𝑗||𝜔) 

 Compute 𝑉(𝑝𝑘𝑖 , ℎ, (𝑅, 𝑠)), if outputs 0, 𝑐𝑒𝑟𝑡 is invalid and break 

 Else Compute 𝑝𝑘𝑝 = 𝑠 ∙ 𝐺 + 𝑟 ∙ 𝑝𝑘𝑗, 𝑅 = (𝑥𝑟 , 𝑦𝑟), 𝑟 = 𝑥𝑟 

 Compute the deadline time 𝑡𝑑 = 𝑡𝑛𝑜𝑤 + 𝑡 

 Save the tuple (𝑝𝑘𝑖, 𝑝𝑘𝑗 , 𝜔, (𝑅, 𝑠), 𝑝𝑘𝑝, 𝑎, 𝑡, 𝑡𝑑) in the storage of Proxy_SC 

 Take 𝑎 WAN out of Alice’s account (i.e. account 𝑝𝑘𝑖) and lock it for time 𝑡 

 

Bob performs the following check and computation to get the proxy secret key: 

 Scan the storage of Proxy_SC to find the tuple that involves 𝑝𝑘𝑗 

 Parse the tuple (𝑝𝑘𝑖, 𝑝𝑘𝑗 , 𝜔, (𝑅, 𝑠), 𝑝𝑘𝑝, 𝑎, 𝑡, 𝑡𝑑) 

 If 𝑡𝑛𝑜𝑤 > 𝑡𝑑, the deadline time has passed, break. 

 Else compute 𝑠𝑘𝑝 = 𝑠 + 𝑟 × 𝑠𝑘𝑗  

 

After this time, a new member of our PoS community (𝑝𝑘𝑝, 𝑎, 𝑡) is born and it will 

participate in the consensus process. When 𝑝𝑘𝑝  is selected as a random number 

proposer or Epoch Leader, then Bob just behaves normally according to the 

consensus protocol using 𝑠𝑘𝑝 for signing. 

 

After the deadline time 𝑡𝑑  has passed, (𝑝𝑘𝑝, 𝑎, 𝑡)  is moved out of the PoS 

Community. The locked 𝑎 WAN will be returned to Alice’s account together with the 

reward which will be split between Alice and Bob proportionally. 

 

3.4 Advantages 

 Compatibility 

Our delegation scheme uses ECDSA, which is the standard digital signature scheme 

used in blockchain protocols for standard signing, proxy designation, and proxy signing. 



So, no extra digital signature schemes need to be introduced. This design has no conflict 

with the existing technical structure. Whether a member directly joins the PoS 

Community or joins through the delegation scheme, the verification logic for the 

member’s proposed block and data remains the same. 

 Non-interactive 

The delegation process is non-interactive, so the original signer and proxy signer don’t 

have to establish a channel to communicate with each other. This saves bandwidth and 

is more practical in the context of blockchain consensus. 

 More efficient 

There are existing ECDSA proxy signature schemes, the most famous of which is 

introduced in the paper “Design of Proxy signature in ECDSA” by Ming-Hsin Chang, 

I-Te Chen, and Ming-Te Chen [10]. We refer to this scheme using the author’s initials, 

MIM. Our scheme’s delegation process is similar to MIM’s; however, our proxy 

verification process is the same as standard ECDSA, which is more efficient than 

MIM’s. The proxy verification processes comparison is listed below. 

Calculation Type MIM’s scheme Our scheme 

Finite Field Calculations 4 3 

Scalar Multiplications on ECC 3 2 

Point Addition on ECC 1 1 

Point Comparison on ECC 1 1 

 Clear division of rewards 

When the original signer delegates its signing rights to the proxy signer, a new proxy 

public key 𝑝𝑘𝑝  is generated, which is controlled by the proxy signer and the 

relationship with the original signer is saved in Proxy_SC. When 𝑝𝑘𝑝 is selected as the 

random number proposer or block proposed by the PoS algorithm, the proxy will 

perform on the behalf of original signer. The benefits made during the consensus 

process will be split between the original signer and proxy signer. Even if an entity is 

delegated by several other entities, the division of rewards is still clear and spilt between 

the corresponding original signer and proxy signer. 

 Message space limited 

Our triple ECDSA proxy signature scheme uses message space to limit the signing 

space of the proxy signer. Even though we haven’t used it (set it as empty) in our 



delegation scheme, it still provides the potential for additional application.  For example, 

we could delegate the signing right to different entities under different conditions and 

so on. 

4 Incentive Mechanism 

For the purpose of incentivizing the active participation in Galaxy consensus protocol 

for Wanchain, 10% (21 million) of the total supply of WAN (210 million) has been 

reserved as reward. Initially this supply will serve as the main incentive for consensus 

participation, but as Wanchain grows and there are more transactions on chain, this 

supplemental reward will become a smaller portion of the total reward, and transaction 

fees will come to serve as the main incentive.   

4.1 Basic Principles 

The incentive mechanism is created according to the following principles: 

(1) The greater the work, the greater the reward. 

(2) Passive and malicious participants are discouraged by penalties. 

(3) Receipt of reward and withdrawal of locked stake is delayed to improve security. 

(4) A fair and benign competitive environment is desired. 

(5) Should ensure reasonable and relatively stable revenue. 

4.2 Incentive Model for Consensus 

50% of the supplemental reward will be issued in the first five years, and the issuance 

of the reward will be cut in half every five years thereafter. Five years is a reasonable 

period after taking into consideration both Wanchain’s growth and also long-term 

returns for consensus participants. The relation between the total supplemental reward 

and the year is:  

𝑅𝑡 = 𝑎 + 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑏
2 +⋯ =

𝑎

1 − 𝑏
 

Where 𝑅𝑡 denotes the supplemental reward, 𝑎 denotes the reward in the first interval, 

and 𝑏 denotes the reduction ratio. In our design, 𝑅𝑡 is 21 million, 𝑏 is 50%, and 𝑎 is 

10.5 million, this should serve as an attractive incentive for consensus participants. The 



following figure shows the supplemental reward allocation where the vertical axis 

denotes the total reward and the horizontal axis denotes the years. 

 

Within each five year period, the supplemental reward will be allocated equally within 

each epoch. Taking the first five years as an example, if the total supplemental reward 

in this period is 𝑎 and there are 𝐾 epochs, the reward for each epoch 𝑅𝑒 would be: 

𝑅𝑒 =
𝑎

𝐾
 

𝑅𝑒 will be given to the Random Number Proposers (RNPs) and Epoch Leaders who 

behave honestly. In contrast to POW, not all of the transaction fees for a block will be 

given to the block proposer. The transaction fee must also be distributed amongst all 

the RNPs because random number generation is a very important parameter for 

ensuring security. If only the supplemental reward is supplied, the RNPs will not be 

incentivized to participate. Since the supplemental reward is cut in half every 5 years, 

RNPs will have less and less motivation to participate. In this way, the reward for each 

epoch will be settled in the first block of the next epoch. This ensures consistency in 

the behavior of the participants. 

Activeness Index 

In Galaxy consensus, two types of participants make contributions in maintaining 

consensus. RNPs are in charge of generating random numbers to update the Random 

Beacon. Epoch Leaders are in charge of generating the secret message array and 

proposing blocks. Both of them need to be rewarded in order to incentivize honest 

behavior.  Therefore, participants are encouraged to consistently participate in random 

number generation, secret message generation, and block proposal in the slot owned by 
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the Epoch Leader. An activeness index is thus defined so that participants will be 

rewarded in accordance with their activeness.  

The RNP activeness index is defined as 𝛼𝑅𝑁𝑃. If an RNP participates in both of the two 

stages for random number generation, his 𝛼𝑅𝑁𝑃 would be 1, and 0 otherwise. Similarly, 

the activeness index is denoted as 𝛼𝐸𝐿  for Epoch Leaders. If an Epoch Leader 

participates in both of the two stages for secret message array generation, his 𝛼𝐸𝐿 would 

be 1, and 0 otherwise. These two indexes will influence their reward from random 

number generation and secret message array generation. 

Finally, the activeness index 𝛼𝐸𝐿𝐺   is defined for the Epoch Leader Group. In our 

protocol, at the start of an epoch, the Slot Leader can only be known by the Epoch 

Leaders. After the block is proposed, the Slot Leader can be verified publicly. If some 

block is not proposed, only the Epoch Leaders know who is responsible for its proposal. 

This information is not publicly available since lot of work must be done to make it 

publicly verifiable, and the benefits of doing so are not worth the work necessary. So, 

the Epoch Leader Group activeness index is defined to solve the problem in a rational 

way. If an epoch includes 𝐾𝑒 slots and only 𝐾𝑣 blocks are proposed validly in this epoch, 

the 𝛼𝐸𝐿𝐺  of the Epoch Leaders in charge of this epoch would be 

𝛼𝐸𝐿𝐺 =
𝐾𝑣
𝐾𝑒

 

This index will influence their reward from proposing blocks. 

Reward Division 

As for the specific allocation in each epoch, the total reward must be divided amongst 

the RNPs and Epoch Leaders. An Epoch Leader is required to participate in the unique 

Slot Leader selection stages and propose a block if selected. An RNP is required to 

participate in the DKG stage and Signing stage. So 𝜆 of the total reward for an epoch is 

given to Epoch Leaders and (1 − 𝜆) for RNPs. (1 − 𝜇) of the Epoch Leaders’ reward 

will be allocated to incentivize their contributions for generating the secret message 

array. 

Thus, if there are 𝑁 Epoch Leaders and 𝐾𝑒 slots in each epoch, the reward for a block 

will be:  

𝑅𝑠 = 𝜇 ∙ (𝜆 ⋅
𝑅𝑒
𝐾𝑒
+ 𝜆 ⋅ 𝑇𝑠) 

Where 𝑅𝑒 denotes the reward for the epoch and 𝑇𝑠 denotes the transaction fee of the 

block.  

An Epoch Leader in charge of proposing blocks in this epoch will get reward 𝑅𝑝 



𝑅𝑝 = 𝛼𝐸𝐿𝐺 ∙∑𝑅𝑠 

Where 𝛼𝐸𝐿𝐺  denotes the Epoch Leader Group activeness index and ∑𝑅𝑠 denotes the 

reward corresponding to the blocks proposed by the Epoch Leader.  

The reward for the Epoch Leader who participates in secret message array generation 

in the previous epoch will be 

𝑅𝑐 = 𝛼𝐸𝐿𝐺 ∙ (1 − 𝜇) ∙ (𝜆 ⋅
𝑅𝑒
𝐾𝑒
+ 𝜆 ⋅ 𝑇𝑠) 

Although (1 − 𝜇) may be as low as 10%, it is necessary to set it to encourage the Epoch 

Leader to be active in secret message array generation, and security is improved as more 

Epoch Leaders participate in secret message array generation.  

The reward for the RNP who participants in random number generation will be 

𝑅𝑟 = 𝛼𝑅𝑁𝑃 ∙
( (1 − 𝜆) ∙ 𝑅𝑒 + (1 − 𝜆) ∙ ∑ 𝑇𝑠)

𝑁𝑟
 

Where 𝛼𝑅𝑁𝑃 denotes the RNP activeness index, 𝑁𝑟 is the number of RNPs and  ∑ 𝑇𝑠 

denotes the total transaction fees of the epoch. 

The total reward in ideal conditions (one slot for each block, total participation for 

random number and secret message array generation) would be (𝑅𝑒 + ∑𝑇𝑠). If any lazy 

behavior occurs, the reward would be less. The remaining reward will be put back to 

the pool to be used as reward for PoS. 

4.3 Incentive Model for Delegation Mechanism 

Since the delegation mechanism is necessary for the stakeholders holding small 

amounts of WAN, it is necessary to design a reasonable incentive model for it. If 

someone wants to be a delegate, they need to publish a profit margin 𝑚. That means if 

the delegator is selected to be an RNP or Epoch Leader with reward 𝑅 after work, the 

delegate will get 𝑅 ⋅ 𝑚, and the delegator will get 𝑅 ⋅ (1 − 𝑚). This simple scheme will 

lead delegates to all provide a similar profit margin through natural competition. 

Besides the max amount of stake a delegate could be delegated is proportional to its 

principal. 

Another goal is the prevention of large staking pools similar to the large mining pools 

which have arisen in PoW systems such as Bitcoin, as this tends to give rise to 

centralization. The model should promote the formation of fair staking pools. For this 

purpose, a ceiling number 𝑠0 is set for the total stake of a single delegate (for example 



10% of all currency in circulation). If a delegate’s stake exceeds  𝑠0, the reward will be 

reduced.  

If the delegate has total stake 𝑠, the reward for the delegator is: 

𝑅𝑜 =

{
 
 

 
 𝑅 ⋅ (1 − 𝑚), 𝑠 ≤ 𝑠0

𝑅 ⋅ (1 − 𝑚) ⋅ (1 −
(𝑠 − 𝑠0)

2

𝑠0
2 ) , 𝑠0 < 𝑠 ≤ 2𝑠0

0, 𝑠 > 2𝑠0

 

 And the reward for the delegate is: 

𝑅𝑑 =

{
 

 
𝑅 ⋅ 𝑚, 𝑠 ≤ 𝑠0

𝑅 ⋅ 𝑚 ⋅ (1 −
(𝑠 − 𝑠0)

2

𝑠0
2 ) , 𝑠0 < 𝑠 ≤ 2𝑠0

0, 𝑠 > 2𝑠0

 

A ranked list of all potential delegates will be provided which includes their profit 

margin and current stake, and all users can make the optimal choice. Since any 

delegation which goes beyond the ceiling 𝑠0  for a certain delegate will lead to a 

decrease in reward for the both the delegate and delegator, the system naturally 

incentivizes stake to be distributed in a more decentralized manner. This reduces the 

risk of conspiracy and incentivizes more active users in the Galaxy consensus 

ecosystem. 

5 Mitigation of Potential Attacks 

Double spending attacks – In a double spending attack, the adversary wishes to make 

two conflicting transactions both appear valid. There are two conditions which must 

occur for this attack: (i) a block with two conflicting transactions or a transaction in 

conflict with a previous valid transaction, (ii) two valid chain forks including 

conflicting transactions. Regarding (i), the protocol requires that any block received 

must be checked for whether it contains any conflicting transactions. Our chain-based 

protocol indicates that only the longest chain is valid. So, no two forks can be accepted 

as both valid, thus preventing double spending. 

Grinding attacks – In grinding attacks, the adversary wishes to influence the leader 

selection process to improve their chances of being Slot Leader. In our protocol, leader 

selection is based on random beacon and two-phase unique Slot Leader selection. In 

the random beacon process, we use a threshold signature scheme that means any 

participant can only determine their own signature share. It is impossible for the attacks 

to determine the final result as long as more than one participant is honest in the random 

number generation, and a number of participants less than the threshold number cannot 

predict the final result either. So, the Epoch Leader selection cannot be influenced by 



the random number generation. In the secret message array generation in the two-phase 

unique Slot Leader selection, the selected participants can only choose to broadcast 

their information or not. If they don’t, they will lose some reward. Additionally, the 

secret message generation is in front of SIGN stage and the Epoch Leaders are sorted 

after SIGN, the adversary has no message advantage to influence the unique Slot Leader 

selection. 

Transaction denial attacks – In transaction denial attacks, the adversary wishes to 

prevent a certain transaction from being confirmed. We emphasize that honest 

participants would not deny any specific transactions. So, if transaction denial attacks 

happen it means the Slot Leaders are all malicious. Because of the honest majority 

assumption and follow-the-stake-rate selection, the probability of these attacks reduces 

exponentially with a base of less than 1 2⁄ .  The possibility for an adversary to perform 

this type of attack comes close to zero.   

Bribery attacks – In bribery attacks, the adversary wishes to corrupt the honest 

participant to work for them in some bad purpose, such as double spending attacks.  In 

our protocol, a rational participant will reject a bribe for two reasons. First, if an honest 

participant accepts the bribe and turns malicious, he will be punished. Second this 

malicious behavior will hurt the Wanchain ecosystem and reduces the value of WAN, 

making the participant’s tokens lose value. Thus, no rational actor will commit a bribery 

attack. As long as the honest majority holds, bribery attacks cannot violate the security 

of our protocol. 

Long-range attacks – In long-range attacks[12], the adversary wishes to reconstruct a 

chain from a position long before. Then he can make the chain data different from its 

true state, for example, to double spend. In our protocol, we design a mechanism to set 

some check points on the valid chain, which means as the chain grows, the past data 

before the last check point cannot be changed and new blocks before the last check 

point will not be accepted. So, it is impossible for an adversary to succeed in long-range 

attacks. 

Nothing at stake attacks – In nothing at stake attacks, the participant will generate 

new blocks in multiple forks from which he could definitely benefit no matter which 

fork becomes valid. This tends to happen in PoS protocols, because it costs almost 

nothing to generate an additional block, while in PoW consensus, the miners will not 

sacrifice computation resources to follow different forks which may get no reward at 

all. Meanwhile this usually happens when there are more than one valid proposer of a 

slot or position, just like leader selection by VRFs. In our protocol, there is only one 

unique Slot Leader of a slot and there are almost no forks. That means there is no 

motivation to perform nothing at stake attacks.   



Past majority attacks – In past majority attacks, the adversary wishes to corrupt some 

previous participants to take an advantage of stake in some past time. It is reasonable 

in our assumptions that presently the honest stake majority holds. In order to benefit 

from past majority attacks, the adversary needs to cooperate with previous majority 

stake holders to rework new blocks to replace blocks in the past majority epoch. This, 

similar to long-range attacks described above, will conflict with the last checkpoint. 

These kinds of newly generated blocks will not be accepted due to the checkpoint, so 

our protocol is not susceptible to past majority attacks. 

Selfish-mining – In selfish-mining, a participant would keep a new valid block in 

private while constructing the next block in advance. This usually happens in PoW, 

because of the advantage of computation time. However, in PoS, there is no need to do 

so, especially in our protocol. Since the Slot Leaders are determined at the beginning 

of an epoch by the random beacon and the secret message is generated by Epoch 

Leaders, no matter whether the participant broadcasts the new block or not, it cannot 

influence the selection of the next slot. So, he cannot benefit from keeping the new 

block in private. In fact, he may lose rewards by broadcasting the new valid block out 

of the slot window. It is not rational to perform selfish-mining, and in the case it does 

occur, cannot influence the security of our protocol. 

6 Advantages of Galaxy 

Provable security 

Galaxy consensus is based on the Ouroboros consensus model which is provably secure. 

It retains Ouroboros’s original consensus backbone while making improvements to the 

core cryptographic components. 

Low probability of natural forking 

Galaxy consensus uses a ULS (unique leader selection) algorithm to determine the 

block proposer. In contrast with VRF, ULS ensures there is a unique proposer for each 

block. So, it achieves both anonymity of block proposers and low probability of natural 

forking. 

Secure introduction of randomness 

Introduction of randomness has a significant impact on the security of consensus. 

Galaxy consensus introduces randomness using a random beacon, which is based on a 

threshold signature scheme. Our random beacon is secure in two ways. First, it remains 

secure as long as no less than one of the random beacon participants is honest. Thus, it 

reduces the reliance on the honest majority assumption. Second, it ensures G.O.D 

(Guaranteed Output Delivery). This ensures that even if several participants are offline, 



the random beacon will not halt. It functions normally as long as the number of online 

participants exceeds the predefined threshold. 

Rational stake design 

A rational stake design is a significant consideration in a PoS protocol. In order to keep 

the participants live and active, we allow WAN holders to lock their WAN in a special 

smart contract to join in Galaxy consensus. The amount of WAN, locking time, and 

remaining time of the locking period are used as parameters to calculate participants’ 

stake score. This design simulates coin age in account model and ensures the stability 

of the consensus participants. 

Robust delegation mechanism 

Galaxy consensus is a PoS protocol with robust delegation mechanism. The key 

technology behind the delegation mechanism is our newly proposed ECDSA proxy 

signature algorithm, which is compatible, non-interactive, more efficient and message 

limited. This full delegation mechanism ensures that any WAN holder can participate 

in the consensus and improves the activeness of Wanstake.  

Clear and convincing incentive model 

Galaxy consensus has a robust incentive model for consensus participants. Since 

participants use the blockchain as a broadcast channel to exchange information, all their 

behavior is reflected on the chain. We introduce the concept of an activeness index to 

evaluate participants’ performance. The more active, the more reward received. This 

incentive mechanism is clear and convincing. 
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Appendix 1 

In Section 1, we list 4 properties which should be satisfied in the function to calculate 

the amount of Wanstake of consensus participants. A candidate function would be  

𝐻(𝜔, 𝐿, 𝑡) = 𝜔𝜎𝐿𝑒
−𝑡 

Where 𝜎𝐿 is an increasing function of 𝐿. It satisfies the first 3 properties obviously. We 

need to prove that it also satisfy the property 4. 

∫ 𝐻(𝜔, 𝐿1 + 𝐿2, 𝑡)𝑑𝑡′ > ∫ 𝐻(𝜔, 𝐿1, 𝑡)𝑑𝑡′ + ∫ 𝐻(𝜔, 𝐿2, 𝑡)𝑑𝑡′
𝐿2

t′=0

𝐿1

𝑡′=0

𝐿1+𝐿2

𝑡′=0

 

In property 4, 𝑡′ here is the total elapsed time during the locking period and 𝑡 =
𝐿−𝑡′

𝐿
. 

We calculate the integral ∫ 𝐻(𝜔, 𝐿2, 𝑡)𝑑𝑡′
𝐿2

𝑡′=0
 as an example, and transfer the ratio of 

remaining locking time to elapsed time below. 

∫ 𝐻(𝜔, 𝐿2, 𝑡)𝑑𝑡′
𝐿2

𝑡′=0

= ∫ 𝜔𝜎𝐿2𝑒
−(
𝐿2−𝑡′
𝐿2

)
𝑑𝑡′

𝐿2

𝑡′=0

= 𝜔𝜎𝐿2∫ 𝑒
𝑡′−𝐿2
𝐿2 𝑑𝑡′

𝐿2

𝑡′=0

 

= 𝜔𝜎𝐿2𝐿2 (𝑒
𝐿2−𝐿2
𝐿2 − 𝑒

0−𝐿2
𝐿2 ) = 𝜔𝜎𝐿2𝐿2(1 − 𝑒

−1) 

Then the integral concave should be  

𝜔𝜎𝐿1+𝐿2(𝐿1 + 𝐿2)(1 − 𝑒
−1) > 𝜔𝜎𝐿1𝐿1(1 − 𝑒

−1) + 𝜔𝜎𝐿2𝐿2(1 − 𝑒
−1) 

𝜎𝐿1+𝐿2(𝐿1 + 𝐿2) > 𝜎𝐿1𝐿1 + 𝜎𝐿2𝐿2 

(𝜎𝐿1+𝐿2 − 𝜎𝐿1)𝐿1 + (𝜎𝐿1+𝐿2 − 𝜎𝐿2)𝐿2 > 0 

Here 𝜎𝐿 is an increasing function of 𝐿. So the property 4 is satisfied. 

Actually we want a participant to choose one longer participation period rather than 

two shorter participation periods. The integral of 𝐻 function is the accumulative effect 

of stake which represents the reward of a participant in a sense. Thus the property 4 

implies that a participant who chooses one longer participation period rather than two 

shorter participation periods will get more reward. 

 

 

 



Appendix 2 

In cryptography, the proof is an important primary to ensure coherence which means 

that a prover cannot convince a verifier of a fake statement. Our proof scheme is zero-

knowledge, similar to that in [9], while we make it in elliptic curve. Its correctness and 

security is based on the DDH assumption on elliptic curve.  

First we consider an array of points with length of 2𝑁 where 𝑁 ≥ 2, and the array is 

denoted by 𝑝𝑎 = (𝑃1, 𝑄1, … , 𝑃𝑁 , 𝑄𝑁)  where 𝑃𝑖, 𝑄𝑖 ∈ 𝐸(𝐹𝑝) ,  𝐸(𝐹𝑝) = 𝑛 . The proof 

guarantees that there is a value 𝛼  such that 𝑄𝑖 = 𝛼 ∙ 𝑃𝑖 , 𝑖 = 1,2, … ,𝑁 . The proof is 

constructed as follows: 

 Generate random number 𝜔 ∈ [1, 𝑛] and calculate 

𝑃𝑖̅ = 𝜔 ∙ 𝑃𝑖 , 𝑖 = 1,2, … , 𝑁 

𝑒 = ℎ𝑎𝑠ℎ(𝑃1, 𝑄1, … , 𝑃𝑁 , 𝑄𝑁 , 𝑃1̅, … , 𝑃𝑁̅̅̅̅ ) 

 Then calculate 

𝑧 = 𝜔 − 𝛼 ∙ 𝑒 𝑚𝑜𝑑 𝑛 

The proof is 𝜋 = 𝐷𝐿𝐸𝑄(𝑃1, 𝑄1, … , 𝑃𝑁 , 𝑄𝑁) = (𝑒, 𝑧). 

The verification of the proof is as follows: 

 With (𝑃1, 𝑄1, … , 𝑃𝑁 , 𝑄𝑁) and (𝑒, 𝑧), we calculate 

𝑃′𝑖 = 𝑧 ∙ 𝑃𝑖 + 𝑒 ∙ 𝑄𝑖, 𝑖 = 1,2, … ,𝑁 

 Then calculate 

𝑒′ = ℎ𝑎𝑠ℎ(𝑃1, 𝑄1, … , 𝑃𝑁 , 𝑄𝑁 , 𝑃
′
1, … , 𝑃

′
𝑁) 

If 𝑒 = 𝑒′, the proof is valid. Easy to prove 

𝑃′𝑖 = 𝑧 ∙ 𝑃𝑖 + 𝑒 ∙ 𝑄𝑖 = 𝑃′𝑖 = (𝜔 − 𝛼 ∙ 𝑒) ∙ 𝑃𝑖 + 𝑒 ∙ 𝑄𝑖 = 𝜔 ∙ 𝑃𝑖 = 𝑃𝑖̅ 

The generation and verification of the proof is simple, so we denote it as Gen_proof 

and Ver_proof in the algorithm and protocol description in the paper above. 

 

 



Appendix 3 

We describe the Epoch Leaders selection in Section 3.5. It is necessary to illustrate that 

the probability of a protocol participant to be a Slot Leader is the same in this two-phase 

selection and selection directly.  

We define the scenario first. There are 𝑛 protocol participants in the Community and 

the probability for the participant 𝑈𝑖 to be selected as a Slot Leader is 𝑝𝑖. The number 

of the Epoch Leaders is 𝑁 , 𝑁 < 𝑛 . It follows that 𝑝𝑖  is the probability for 𝑈𝑖  to be 

selected directly. Then we compute the probability in the protocol two-phase selection 

and prove the equivalency. As emphasized in Section 3.5, the Epoch Leaders is a 

multiset and the second phase selection is of equal probability. Then, 

𝑃(𝑈𝑖) = 𝐶𝑁
1 ∙ 𝑝𝑖 ∙ (1 − 𝑝𝑖)

𝑁−1 ∙
1

𝑁
+ 𝐶𝑁

2 ∙ 𝑝𝑖
2 ∙ (1 − 𝑝𝑖)

𝑁−2 ∙
2

𝑁
+⋯+ 𝐶𝑁

𝑁 ∙ 𝑝𝑖
𝑁 ∙
𝑁

𝑁
 

∑𝐶𝑁
𝑗
∙ 𝑝𝑖

𝑗 ∙ (1 − 𝑝𝑖)
𝑁−𝑗 ∙

𝑗

𝑁

𝑁

𝑗=1

 

Here we know 

𝐶𝑁
𝑗
∙ 𝑝𝑖

𝑗 ∙ (1 − 𝑝𝑖)
𝑁−𝑗 ∙

𝑗

𝑁
=

𝑁!

𝑗! ∙ (𝑁 − 𝑗)!
∙ 𝑝𝑖

𝑗 ∙ (1 − 𝑝𝑖)
𝑁−𝑗 ∙

𝑗

𝑁

=
(𝑁 − 1)!

(𝑗 − 1)! ∙ (𝑁 − 𝑗)!
∙ 𝑝𝑖

𝑗 ∙ (1 − 𝑝𝑖)
𝑁−𝑗

= 𝑝𝑖 ∙ 𝐶𝑁−1
𝑗−1

∙ 𝑝𝑖
𝑗−1 ∙ (1 − 𝑝𝑖)

𝑁−𝑗 

Then 

𝑃(𝑈𝑖) =∑𝑝𝑖 ∙ 𝐶𝑁−1
𝑗−1

∙ 𝑝𝑖
𝑗−1 ∙ (1 − 𝑝𝑖)

𝑁−𝑗

𝑁

𝑗=1

= 𝑝𝑖 ∙∑𝑝𝑖 ∙ 𝐶𝑁−1
𝑗−1

∙ 𝑝𝑖
𝑗−1 ∙ (1 − 𝑝𝑖)

𝑁−𝑗

𝑁

𝑗=1

= 𝑝𝑖 ∙ (𝑝𝑖 + 1 − 𝑝𝑖)
𝑁−1 = 𝑝𝑖   

Now we prove the equivalency of probability in two-phase leader selection and direct 

selection.  

 

 

 


